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1 Executive Summary 
This deliverable reports on the progress of the tasks T5.1 “Biomedical knowledge server” and T5.2 
“Knowledge base creation”. The document specifies the developments in the context of WP5 – 
Biomedical Knowledge Engine Server or simply Knowledge Engine (KE), which is considered a key 
component of the overall Khresmoi architecture. The KE is responsible for the ontology management 
process that includes semantic data integration of various use case datasets, their consistent 
representation in a formal logical model and, finally, the efficient retrieval of knowledge in the KE. 

Our work aims to deliver a generic service, capable of addressing the different structure and semantic 
heterogeneity levels of biomedical knowledge by combining a classic data integration infrastructure 
with ontologies and efficient reasoning algorithms. The WP5 infrastructure enables the consolidation 
or federation of knowledge, depending on data source requirements. It persistently stores various types 
of information such as ontologies, instance data, unstructured text, semantic annotations (i.e. links 
between ontology instances and text annotations), image meta-data, multilingual semantic networks, 
user feedback and other system runtime data. The infrastructure needs to handle very large amounts of 
data that must be processed by repeatable update routines. 

This deliverable is complemented by an early version of D5.2 “Large Scale Biomedical Knowledge 
Server”, which integrates a reduced number of datasets, identified by the Khresmoi use cases. All the 
work in D5.2 is done with the help of new components, developed and presented later in this 
deliverable. 

2 Introduction 

In the “Biomedical Knowledge Engine” work package we are in the process of developing a generic 
infrastructure, capable of processing extremely large, rapidly growing and potentially inconsistent or 
incomplete information. The current document presents general information integration concepts, the 
Knowledge Engine (KE) architecture and software infrastructure that will be used for the successful 
implementation of D5.2 “Large Scale Biomedical Knowledge Server”. 

Data integration is the process of ensuring interoperability between different data sources by providing 
a unified view of the information contained in the data sources. A key objective for this process is to 
build a consistent and homogenous global data model that unifies all sources. Lenzerini in [1] gives a 
formal definition of data integration (I) as a triple consisting of I = (G, S, M), where G is the global 
schema (unified view towards the information), S is the source schema and M the mapping between G 
and S. The mapping between different data sources has to overcome four types of incompatibilities or 
heterogeneity levels of the information described by Sheth [2]: 

• The system level reflects scenarios where data is accessed via an intermediate storage interface 
(i.e. a different file system or a physical separation between system and data) 

• The syntactic or format level is concerned with the problems of cross-platform data encoding 
like ASCII, UTF-8, UTF-16 and etc. These compatibility issues are largely addressed by the 
XML 1.0 format specification and further refined by XML 1.1, so they are beyond the scope 
of our work; 

• The structure (schema) level refers to heterogeneity in the entity modelling, their attributes, 
type hierarchy, cardinalities and the behaviour with respect to the schema constrains e.g. data 
integrity rules;  
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• The semantic (meaning) level refers to incompatibility in modelling 
generalisation/specialisations (drug versus organic chemical), composition/aggregation and 
value level interpretations like homonyms or synonyms; 

Figure 1 shows the nested nature of the heterogeneity levels. Once a specific issue is unresolved, it 
will be propagated in a cascading way to all upper layers. 

 

Figure 1: Syntax, structure and semantic heterogeneity levels. 

The work in WP5 “Biomedical Knowledge Management Engine” is focussed on integrating 
information from heterogeneous sources and overcoming various types of structure and semantic level 
incompatibilities by developing extract and associate rules. After the semantic heterogeneities are 
addressed and the information is represented in a consistent knowledge base, further analytics may be 
applied such as text mining, reasoning, semantic similarity prediction, etc. Thus, the WP5 software 
infrastructure is called knowledge management engine since it will address the challenges in data 
integration, semantic incompatibility and the knowledge analysis. Later, this document provides an 
overview of the KE foundation and the choice of the underlying data model, suitable for semantic data 
integration and advanced knowledge analysis. 

The RDF data model is not constrained to a particular application domain and does not define a priori 
the semantics of any application domain, [3]. Its abstract knowledge representation formalism fits into 
a wide range of use-cases and application scenarios from meta-data publishing on the web, data 
integration, implementation of complex formal logical models (i.e. ontologies), etc. Such cross use 
case compatibility is achieved by a number of W3C standards, specifications and recommendations 
that cover different aspects of the ontology language layers. By the term ontology language layer, we 
mean the set of theoretical modelling primitives that every ontology language can be decomposed into: 

• The data model determines the mathematical data-structure (e.g. directed acyclic graph) that 
describes the ontology, e.g. the RDF data model, [3]; 

• Epistemology defines the language at the conceptual level or specifies data model patterns, 
used to represent notions like concepts, classes, relations, properties, attributes, roles, etc.; 

• The vocabulary determines what sort of symbols are valid for composing expressions in the 
ontology language by giving naming conventions for various primitives, defined in the data 
model and the epistemology levels (for instance the vocabularies of Dublin Core (DC) , 
Simple Knowledge Organization System (SKOS), Web Ontology Language (OWL)); 
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• The syntax determines the structure of the valid expressions within the language and its 
serialization formats (RDF/XML, Turtle, RDF/JSON, JSON Triples, etc.); 

• Semantics is the top layer that determines the meaning of the expressions made in the 
ontology language; it is often defined in terms of pairs consisting of a mathematical model and 
a function, which define the correspondence between the expressions of the language and the 
elements of the model; any sort of inference or induction of implicit triples is performed on 
the basis of the semantics, e.g. OWL2-RL, SKOS, etc.; 

To summarize, the RDF data model is highly abstract and supports the layering of several ontology 
primitives, which makes it an excellent candidate for the KE internal representation format. Hence, a 
final contributing reason for its selection over the classical database technology is the fact that the 
latest SPARQL 1.1 specification [4] fully covers the relation algebra [5]. 

3 Semantic Data Integration with RDF 

This chapter presents an analysis of the different levels of performing data integration. Ziegler and 
Dittrich [6] define multiple integration levels depending on its specificity. They start from 1) Manual 
integration – no real integration is done since the interpretation is performed by the end-user; 2) 
Common user interface – data from relevant sources are displayed in a single view in the application; 
3) Integration by applications or middleware –integration is done on the concrete application level 
where the developers are relieved only from implementing common integration functionality; 4) 
Uniform Data Access –information integration is realized by virtual data or data abstracted from its 
physical structure in runtime; 5) Common Data Storage – is the physical reorganisation or replication 
of the existing data to a new place and possibly new global schema. It is a general rule that the 
integration becomes more efficient when it is moved closer to the physical storage. Thus, when we 
need to operate with very large amounts of information like in the context of the Khresmoi project, our 
choice for efficient data integration is practically limited to the data consolidation (or warehousing) 
and federation approaches. In the next paragraphs we summarize the different trades-offs in the two 
approaches and their impact on the knowledge engine design. 

Data warehousing is the process of centralizing the information into a common physical storage 
model. It requires the reorganization and consolidation of all data into a global schema, and may either 
fully replace the old databases or replicate the information on a regular basis. Either way, data 
consolidation requires the design and execution of extract transform and load scripts that need to 
resolve the structure and semantic heterogeneities between the source and the global schema during 
data loading.  

Data federation utilizes a different approach, using the Uniform Data Access level described in [6], 
which nowadays is often referred to as data virtualisation. Data virtualisation is a technique for 
abstracting the information from its physical storage and organisation. This enables the cross-data 
source mediation between the multiple results and query formats during the execution of every 
request. Thus, all structure and semantic heterogeneities need to be resolved at runtime, which adds 
efficiency overheads. Furthermore, the pure federation approach is well known for its inability to 
efficiently deal with many remote join operations. A remote join is the computational merging of 
information between two distributed physical and/or logical interfaces.  

In the Khresmoi project the integration strategies of data warehousing and federation demonstrate 
significant trade-offs because of the extreme amounts of semantic enabled data that need to be 
processed efficiently. Calabria [7] extends the two previously mentioned approaches to four 
architecture approaches presented in Table 1: 

Table 1: Different data integration architecture used by the industry. 
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Integration 
Architecture 

Type of data 
integration 

Advantages Disadvantages 

Data warehouse Warehousing • Fast queries 

• Clean data 

• Full control over 
query 
optimizations 

• Stale data 

• Complex schema 

• Redundant data 

Mediator-based 
Architecture 

Federation • Current data 

• Flexible 
architecture 

• No duplication of 
data 

• Data autonomy 

• Slower queries 

• Complex schema 

• Little or no data cleansing 

• Temporary unavailable 
services cause incomplete data 
fetching 

Service Oriented 
Architecture 

Federation • Current data 

• Flexible 
architecture 

• Schema tailored to 
users 

• No duplicate data 

• Requires source availability 

• Little or no data cleansing 

Peer-based 
Architecture 

Federation • Current data 

• No global schema 

• Flexible and 
independent 

• Slower queries 

• Experimental 

• Little or no data cleansing 

• Redundant data 

Comparing the different approaches in Table 1, we see that each integration architecture offers 
significant advantages and disadvantages. It shows that the best solution for processing large-scale 
information by the KE tends towards warehousing because it provides:  

• Forward chaining inference and materialization of trivial implicit statements; 

• Even and predictable query performance across all information; 

• Unlimited capabilities for data cleaning; 

• Integration of consistency checking, which is often critical for the biomedical domain; 

The federation approach and the Mediator-based Architecture enable the integration of autonomous 
data sources that cannot be replicated in a warehouse, because their content is updated too often and/or 
because of security restrictions. The Peer-based Architecture offers excellent flexibility, but the 
existing disadvantages, such as the lack of a global schema and the slow querie times. 
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3.1  RDF Warehousing 
An RDF warehouse requires the translation of all data sources to RDF triples and loading the 
statements into different named graphs (contexts). Keeping different dataset in separate named graphs 
guarantees the minimal provenance information required in order to support incremental information 
updates. 

The Linked Life Data (LLD) service [8] is an example of an RDF warehouse project that demonstrates 
excellent performance for a wide range of SPARQL queries against billions of RDF statements. The 
service relies on a highly efficient persistence of RDF, a query optimizer and an integrated forward 
chaining reasoner that enables the indexed search of implicit statements. Once all the information is 
consolidated into a single physical structure, resource alignment rules are defined to link related 
identifiers. Figure 2 depicts six alignments rules, where the dashed lines and the blue text of the 
captions (used either as part of the URI or literals) designate the criteria for linking the information. 
Since the specified mapping rules are not universally applicable for arbitrary RDF datasets, they are 
manually controlled for each specific subset. 

 
Figure 2 Resource alignment patterns in LLD. 

Figure 3 illustrates the semantic aspect of the instance mappings. 
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Figure 3: Instance mappings in LLD using the SKOS vocabulary. 

Local RDF storage engines can provide full control over the query optimisations and statistics on each 
value’s associations, allowing the calculation of optimal execution plans for complex information 
joins. Queries with unbound predicates are especially difficult to optimize. The SPARQL query 
presented in Table 2 lists all unique predicates for resources of type Protein. The first pattern executed 
against LLD 0.8 results in 16,505,340 possible bindings. The second pattern to be merged with the 
first one results in 5,120,886,447 possible bindings. This yields a total of 8.45E+16 tuples if naive 
optimisation is used. However, the total execution time for the presented query is less than 60 seconds 
despite its extreme complexity. Similar types of queries are not practical for any sort of pure federated 
environments because of the previously mentioned remote join limitation. 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX uniprot: <http://purl.uniprot.org/core/> 

 

SELECT DISTINCT ?predicate 

WHERE { 

        ?subject rdf:type uniprot:Protein . 

        ?subject ?predicate ?object. 

} 

Table 2: SPARQL query with unbound predicate. 

In conclusion, warehouse architectures, like the one implemented by the LLD project, guarantee fast 
queries because they offer a single data model, storage engine-provided query optimisation strategies 
and the possibility of data quality control and cleaning. However, the central control over the 
information comes at a cost. Every warehouse has redundant and stale data, which requires regular 
updates. In some scenarios, the warehousing approach is not compatible with specific data source 
licences or imposed security restrictions. The next chapter will investigate how the KE architecture 
may overcome these limitations. 
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3.2  SPARQL Endpoint Federation 
The service-oriented and mediator-based architectures are very similar, with the exception of the API 
interface that is used to communicate with the federated databases. In the service-oriented architecture 
the integration middleware will support any type of data objects returned by the service and will 
automate their mappings to the global model. In the context of RDF, the mediator-based architecture is 
very close to the SPARQL 1.1 federation working draft [9]. The working draft is produced as a 
response to the increasing number of public SPARQL endpoints, the need to integrate information 
distributed across the web and to overcome the licence or security restrictions imposed by specific 
data sources. The SPARQL language syntax and semantics are extended with the SERVICE and 
BINDINGS keywords that enable the query rewrite to compose a query that delegates specified triple 
patterns to a series of services. 

The SPARQL federation is a very promising approach to the simple integration of very large non-
semantic databases. The R2RML working draft [10] presents a language for expressing customized 
mappings from relational databases to RDF dataset that could be further exposed as a virtual SPARQL 
endpoint over the mapped relational data. Still, a major challenge for efficient query execution is the 
limited interface that does not include the sharing of any statistics to be used in the optimisation. 
Nonetheless, the access to virtual SPARQL endpoints is a practical way to overcome security and 
licence limitations. 

4 Biomedical Knowledge Engine  

The KE is a core Khresmoi component. [11] defines the persistence layer responsible for the storage, 
retrieval and integration of information. Furthermore, it automates the execution of batch core services 
to process huge amounts of information. Figure 4 defines the KE reference architecture and the 
different supported external interfaces: 

• Datasets: the data sources to be processed by the KE. The complete list of the possible 
datasets, their licence and purpose is presented in [12] and how they are used in KE is 
described D5.2; may change with the evolution of the project; 

• Batch processing and Extract Transform Load (ETL): the layer responsible for overcoming the 
structure heterogeneity, cleaning data and aligning the semantic incompatibilities between the 
different data sources; the output of each ETL job is a stream of RDF statements that can be 
directly fed to the semantic database; 

• Semantic Database: the component responsible for controlling the persistent information, 
required indexes, forward chaining reasoner and query optimisation statistics; the semantic 
database is realized with an RDF database instance; 

• Knowledge Engine: implements all specialized functionality required on top of the semantic 
database, exposes specialized data access interfaces and offers a standard SPARQL endpoint; 
the KE also includes a web interface for knowledge navigation, exploring and linked data 
publishing; 

• Web services: summarize all interfaces required to be implemented by the Knowledge Query 
Service (KQS) defined in [11]; 

• SPARQL/Sesame: a standard API, exposed by the KE to access the persisted information with 
other semantic clients; Sesame is de facto considered a standard interface for RDF repository 
access; 
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• Exports: offer specialized information dumps and interface for bulk operations like knowledge 
mining or analysis; 

 
Figure 4 Biomedical Knowledge Engine reference architecture. 

4.1 Batch processing and Extract Transform Load 
The Khresmoi project presents the problem of dealing with dynamic heterogeneous data, originating 
from many different sources. The relevant information will have to be extracted from the data sources, 
transformed into a format, supported by the system, and semantically disambiguated before loading it 
into the knowledge base. This process is commonly referred to as Extract-Transform-Load (ETL). 

ETL is a data insensitive process, which requires high efficiency not only in terms of good 
performance and scalability, but also in easy maintenance and traceability of each individual step of 
the complete integration process. Talend Open Studio (TOS) is an open-source solution for performing 
data integration, based on the Eclipse platform that offers off-the-shelf a powerful toolkit and 
infrastructure for designing data processing tasks known as jobs. TOS uses java code, generated by 
Java Emitter Templates (JET), a part of the Eclipse EMF Framework. The templates are based on the 
ETL process model and the data model, allowing for high-level abstraction programming or meta-
programming. JET templates are similar to the Java Server Pages (JSP) syntax and primarily contain 
static code, which is output “as is”. The fixed content is enriched by a number of JSP-like tags that are 
evaluated and interpreted by the generation engine in various ways [13]. A summary of the available 
tags is given in Table 3 JET Template Tags: 

Type Syntax Description 

JET Directive <%@ jet attributes %> Declares the beginning of the template 

Include Directive <%@ include file=”URI” %> Includes another template 

Expression <%= expression %> Inserts the expression result 

Scriptlet <% code %> Executes the code fragment 

 Table 3 JET Template Tags 

In order to get a better understanding of the code generation, used by TOS, consider the following 
excerpt from tGateDocumentToRDF – a component, responsible for the serialization of GATE 
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semantic annotations to RDF. As a first step, the component has to create/open a file on the system for 
writing, based on user input:  

<%@ jet  

imports=" 

     org.talend.core.model.process.INode 

     org.talend.core.model.process.IConnection 

 org.talend.designer.codegen.config.CodeGeneratorArgument 

 org.talend.core.model.process.ElementParameterParser 

 "  

%> 

<% 

 CodeGeneratorArgument codeGenArgument = (CodeGeneratorArgument) 
argument; 

 INode node = (INode)codeGenArgument.getArgument(); 

 String cid = node.getUniqueName(); 

 boolean append = (Boolean) 
ElementParameterParser.getObjectValue(node, "__APPEND__"); 

 String location = (String) 
ElementParameterParser.getObjectValue(node, "__LOCATION__"); 

%> 

 

java.io.Writer writer_<%=cid%> = null;  

 try { 

   java.io.File f = new java.io.File(<%=location%>); 

writer_<%=cid%> = new java.io.OutputStreamWriter(new 
java.io.FileOutputStream(f, <%=append%>)); 

    

 } catch (java.io.IOException e) { 

   throw new RuntimeException("Error while serializing 
data!", e); 

 } 

Table 4 Meta-programming with JET. 

JET templates enable the easy extension of the environment with custom components that introduce 
new features to be used within the graphical designer. A key advantage of the TOS environment, 
compared with the other data integration or mediation technologies, is that it uses the formal pipeline 
descriptions to generate executable java classes, which perform the actual work. A pair of formal 
description and generated java code is referred to as a job. Compared to the same tasks implemented in 
pure java code, these jobs have a performance decrease lower than 10-3. Jobs can be exported as stand-
alone executable java archives (JARs) to be deployed to a production server. At the same time the 
intuitive TOS graphical user interface provides an easy way to debug the data flows and run them in a 
batch mode or scheduled sequences. Parallelization is another issue addressed by TOS on job-design 
level, allowing the simultaneous execution of sub-processes on multiple threads.  
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In the context of the Khresmoi project we have developed text analysis components to integrate the 
existing WP1 tools and infrastructure.  

Table 5 lists all newly developed Talend components and explains their purpose: 

Name Family Description 

tGateAnnotator GATE Annotates text using a specified GATE 
application (*.xgapp); suitable for 
parallelization 

tGateInstantiator GATE Loads a specified number of GATE 
application instances   

tGateDocumentToRDF GATE Transforms a GateDocument object into 
RDF statements (triples) 

tGateDocumentToXML GATE Serializes a Gate document in XML 
format 

tMimirInitializer Mimir Creates and opens a new Mimir index 

tMimir Mimir Extracts data from GATE documents and 
adds it to a Mimir index 

tMimirClose Mimir Closes and finalizes a Mimir index 

Table 5 Talend components that integrate the WP1 infrastructure. 

The extensions of TOS provide a powerful infrastructure for populating and maintaining the Khresmoi 
knowledge base. Several processes are already implemented as jobs and used in practice to create and 
support the knowledge base prototype. 

So far, three key scenarios/tasks have been identified: converting heterogeneous data into RDF; 
importing data into the semantic database (OWLIM); and integrating data with WP1 annotation tools. 
For an example TOS workflow Figure 5. 
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Figure 5: Data is extracted from a remote SPARQL endpoint, annotated using a predefined 

GATE application and indexed by infrastructure, created in work package 1. 

4.2 Semantic Database 
OWLIM is a product family of semantic databases, fully implemented in Java and compliant with the 
most popular RDF connectivity APIs – Sesame and Jena. It comes in three editions: OWLIM-Lite, 
OWLIM-SE (Standard Edition) and OWLIM-Enterprise that all share the same inference mechanisms, 
rule language and rule compiler. Thus, the product family ensures smooth interoperability and 
capacity expansion from small research prototypes to big enterprise clusters, capable of processing 
millions of queries [14] with industrial strength resilience and automatic fail-over. OWLIM-Lite is the 
fastest repository where all operations are executed in memory. Its scalability is limited only to the 
available hardware RAM. In the typical usage scenarios it is designed for datasets of 100 million 
statements and it features the following key characteristics: 

• Reasoning and query evaluation are performed entirely in main memory; 

• It employs a persistence strategy that ensures data preservation and consistency; 

• The loading of data, including the time for forward chaining, is extremely fast; 

• Easy configuration; 

OWLIM-SE (previously BigOWLIM) is suitable for handling massive volumes of data and very 
intensive querying activities. It is designed as a commercial-grade database management system. This 
has been made possible through: 

• File-based indices, which enable it to scale to billions of statements even on desktop 
machines; 

• Special-purpose index and query optimization techniques, ensuring fast query evaluation 
against very large volumes of data; 

• Optimized handling of owl:sameAs (identifier equality) to boost efficiency for data integration 
tasks; 

• Efficient invalidation of inferred statements, which allows efficient delete operations; 
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OWLIM-Enterprise (previously BigOWLIM Replication Cluster) is designed for resilience and 
parallel query-answering performance through: 

• Parallel execution of queries on multiple worker nodes; 

• Dynamic configuration of cluster; 

• Automatic fail-over and synchronization - no single-point of failure; 

Table 6 summarizes all OWLIM features and the common application scenarios, depending on the 
data scale: 

Product name Features Application 

OWLIM-Lite • Fast 

• In memory 

• Non-trivial inference 

• SPARQL queries 

Small repositories of up to 10 
million statements 

OWLIM-SE • Highly scalable 

• Non-trivial inference 

• Multi-user support 

• Optimized owl:sameAs 
handling 

• Hybrid queries (SPARQL + 
fulltext, geospacial etc) 

• RDF rank 

• Plugin extendable 

Repositories of up to 20 
billion statements 

OWLIM-Enterprise • All OWLIM-SE features 

• industrial strength resilience 

• linearly scalable parallel query 
performance 

• load-balancing  

• automatic fail-over 

Replication cluster 
infrastructure based on 
OWLIM-SE 

Table 6 OWLIM edition comparison. 

All editions come with several standard prebuilt rule-sets, namely RDFS, OWL-Horst (similar to 
pD*), OWL-Max (RDFS with most of OWL 2) and OWL 2 profiles RL and QL [15]. Due to the fact 
that OWL 2 QL is designed for query rewriting over relational databases, the OWLIM implementation 
using forward chaining reasoning is suboptimal and no claim for the complete support of this profile is 
made. The users are able to build their own custom rule-sets using datalog like rules with inequality 
constraints. Table 7 gives an example of the rule language syntax by showing the implementation of 
owl:FunctionalProperty. 
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Id: prp_fp 

p <rdf:type> <owl:FunctionalProperty> 

x p y1 [Constraint y1 != y2] 

x p y2 

------------------------------- 

y1 <owl:sameAs> y2 

Table 7 OWLIM language example – the definition of owl:FunctionalProperty 

The OWLIM semantic database will guarantee excellent data loading and query execution speed of the 
KE [16]. The upcoming deliverable D5.3: “Scalability and performance evaluation report” will 
provide a detailed report of the Large Biomedical Knowledge Server performance, delivered in D5.2.  

4.3 Semantic Database Extensions 
Nowadays it is expected that every semantic database provides SPARQL support. Still, there are often 
data intensive computations, which go well beyond the standard query expressivity either because 1) 
they tend to incorporate complex procedure logic or 2) the language algebra is not sufficient to cover 
it, like in the case of a vector space model. Regardless of the specific problem, the motivation is to 
push the computation as close to the data as possible, in order to guarantee decent query efficiency. 
Such an optimisation guarantees that no significant amounts of data will be moved outside the 
database process address space and the query execution planner can benefit from using a low level 
interface. This type of optimization is nowadays standard for every database system. In the context of 
OWLIM, this data efficiency problem is resolved with the introduction of the plug-in API that allows 
the mapping between special predicates and a piece of software logic, added to the class path of the 
database. The special predicates are special purpose Internationalized Resource Identifiers (IRIs), 
used in SPARQL triple patterns on the predicate position to denote special query evaluation strategies. 
For instance, OWLIM 4.x supports geospatial resource indexing, which is not practical to be stored as 
precomputed information by the forward-chaining reasoner. 

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

PREFIX geo-ont: <http://www.geonames.org/ontology#> 

PREFIX omgeo: <http://www.ontotext.com/owlim/geo#> 

 

SELECT distinct ?airport_name 

WHERE { 

  ?a1 geo-ont:name "Bournemouth" . 

  ?a1 geo-pos:lat ?lat1 . 

  ?a1 geo-pos:long ?long1 . 

  ?airport omgeo:nearby(?lat1 ?long1 "80mi" ) . 

  ?airport geo-ont:name ?airport_name . 

  ?airport geo-ont:featureCode geo-ont:S.AIRP . 

  ?airport geo-pos:lat ?lat2 . 

  ?airport geo-pos:long ?long2 . 

  ?a2 geo-ont:name "Brize Norton" . 
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  ?a2 geo-pos:lat ?lat3 . 

  ?a2 geo-pos:long ?long3 . 

  FILTER( omgeo:distance(?lat2, ?long2, ?lat3, ?long3) < 80) 

} 

Table 8: Special predicate query that uses geo-spatial indexes. 

Table 8 shows a query that finds all the airports within 80 miles of Bournemouth and filters out those 
that are more than 80 kilometres from Brize Norton. The omgeo:nearby and omgeo:distance predicates 
have a special purpose, configured via the OWLIM plug-in API. The two IRIs call for redirecting the 
triple pattern to an external index .The return results are combined with the rest of the query.  

The OWLIM plug-in API will be the primary mechanism to implement the newly emerging 
Knowledge Query Services (KQS) initially described in [11], which are not effectively expressed 
using ’pure’ SPARQL queries. Hence, by using the plug-in API it is possible to introduce new special 
predicates that extend the SPARQL algebra and prevent the necessity to add a new web service for the 
required functionality. 

5 Conclusion 

In order to integrate the highly heterogenous data required for the Khresmoi project, the RDF model 
with additional support for different ontologies has been chosen as the foundation of the KE. The scale 
of information to be integrated and the requirements for query evaluation speed, data model 
consistency and data privacy make the warehousing approach preferable to federation.  Consequently, 
ETL infrastructure was developed in order to manage the highly dynamic data, thus providing a formal 
and repeatable process for updating the KE. The OWLIM product family will provide the storage 
engine with native RDF and SPARQL support and a light API for extending the KE with additional 
functionality.  

As the use cases for the Khresmoi project are still in development, the datasets to be integrated are 
subject to change. Hence, their description and processing is not in the scope of this document. A list 
of the integrated datasets and their modelling will be provided in D5.2. Still, we can conclude that the 
infrastructure for data integration, management, update, access and evaluation is present. 
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