
Grant Agreement Number: 257528

KHRESMOI

www.khresmoi.eu

Report on the anatomical structure identification and
localization

Deliverable number D2.5

Dissemination level Public

Delivery data due 31.8.2013

Status Final

Authors René Donner, Georg Langs, Dimitrios Markonis,
Matthias Dorfer, Henning Müller

This project is supported by the European Commis-
sion under the Information and Communication Tech-
nologies (ICT) Theme of the 7th Framework Pro-
gramme for Research and Technological Develop-
ment.

D2.5 Report on the anatomical structure identification and localization

Executive Summary
This deliverable describes the computational framework for the identification and localization
of anatomical structures in medical imaging data. It is a core process in the KHRESMOI index-
ing framework of radiological imaging data in the clinical context. The focus of the deliverable
is the framework that integrates several algorithmic approaches into a unified scalable indexing
system. It relies on methodology developed in KHRESMOI. The system estimates coarse po-
sition of imaging data in relation to human anatomy. It estimates a mapping between a whole
body reference space and each individual volume. This mapping is then used to establish lo-
cation correspondence across cases, and to propagate anatomical structure labels to individual
imaging data. The deliverable concludes with a discussion of the current status, and its limita-
tions and suggests the direction of research for the remaining project period.

Page 1 of 17

D2.5 Report on the anatomical structure identification and localization

Table of Contents
1 Introduction 5

2 Map Reduce Framework for Structure Identification and Localization 6
2.1 Aims of the scientific computing framework 6
2.2 Overview of the scientific computing framework 7
2.3 Terminology . 9
2.4 Illustrating Example . 10
2.5 Graph and node definition . 11
2.6 The 3D Retrieval prototype graph . 12

3 Localization components developed in KHRESMOI 14
3.1 Coarse miniature based localization . 14
3.2 Mapping anatomy labels to individual volumes 15
3.3 Landmark configuration localization . 15
3.4 Fast landmark localization . 16

4 Conclusion 16

5 References 17

Page 2 of 17

D2.5 Report on the anatomical structure identification and localization

List of Figures
Fig.1 Simple example of a map-reduce graph. Double borders indicate map nodes

and per-item connections, single borders indicate reduce nodes which only
produce a single output. 10

Fig.2 Current state of the MUW 3D retrieval map-reduce graph. Note how the
graph describes both the long-running off-line training as well as the inter-
active, on-line retrieval back-end powering the user interface. 13

Fig.3 Graph of the localization module . 14

Page 3 of 17

D2.5 Report on the anatomical structure identification and localization

Abbreviations

API Application Programming Interface
CPU Central Processing Unit
CT Computed Tomography
DICOM Digital Imaging and Communications in Medicine
GPU Graphics Processing Unit
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
MR(I) Magnetic Resonance (Imaging)
MRF Markov Random Field
MUW Medical University Vienna
PACS Picture archiving and communication system
RadLex unified language / ontology of radiology terms
ROI region of interest
SLIC Simple Linear Iterative Clustering

Page 4 of 17

D2.5 Report on the anatomical structure identification and localization

1 Introduction
This deliverable describes the system for computational structure localization and identification
during indexing of large scale medical imaging data. It summarizes the results of a number
of lines of work performed in the course of the KHRESMOI project ranging from feature ex-
traction, to model learning, group-wise registration, and landmark localization. The premise of
the KHRESMOI indexing system is that data can be indexed without manual user interaction.
Therefore a computational localization and identification framework parses the data during in-
dexing, to map anatomical labels to the imaging data.

Localization and structure identification is a core process of large scale biomedical image
mining and search. In the context of clinical radiology it serves as a means to constrain search
spaces (e.g., a query consisting of a lung pathology should typically result in search results of
lung pathologies), and to define domains for feature extraction and learning (e.g., features that
are helpful for lung pathology matching, are not necessarily suitable for abdominal pathologies).
In the context of literature search it is an implicit process of matching structures across images.

Previous deliverables hold in-depth information regarding methodology for feature extrac-
tion from imaging data (Deliverable D2.2), the evaluation of all individual components (Deliv-
erable D2.3), and the underlying learning frameworks that form the core for localization and
identification (Deliverable D2.4). In this deliverable we describe how these components are
integrated to obtain a scalable framework that can process medical imaging data to identify the
anatomical structures present.

The KHRESMOI localization and identification framework comprises general methodol-
ogy instead of a collection of specialized approaches. This is motivated by the aim to explore
scalable approaches that aim at capturing the entirety of the imaged observations, instead of
focusing on a growing set of well modeled individual anatomical structures. The KHRESMOI
indexing and retrieval prototype is a modular system. This deliverable will only briefly outline
the localization and structure identification approaches that have been developed in the course
of KHRESMOI. It will focus on the description of the computational framework that integrates
these approaches in a general indexing and retrieval framework. The deliverable is divided into
two main parts:

1. Scalable computing framework: We describe the computing framework, that allows for
a scalable, parallelized computation of the localization during indexing of large amounts
of medical imaging data. Given a set of volume data such as MRI, or CT volumes, the
system assigns each voxel in each volume a position in a reference space, that establishes
correspondence across volumes. It labels those voxels that are part of indexed organs.

2. Localization and structure identification algorithms: We outline the components that
are part of this framework. There are two directions of algorithms relevant for localiza-
tion, both of which rely on a learning- and a mapping phase:

(a) atlas mapping of entire medical imaging volumes;

(b) identification of individual landmarks in the volumes.

In addition to describing the current status of the system, we list its limitations, and draft the
coming work for finalizing the indexing and retrieval prototype.

Page 5 of 17

D2.5 Report on the anatomical structure identification and localization

2 Map Reduce Framework for Structure Identification and
Localization

In this section we describe the framework which was developed to perform the indexing. It
allows for structuring the localization components, and the execution of localization and struc-
ture identification. The system allows for further development of image processing and analysis
algorithms independently from scaling, parallelization, dependency checking, data persistence
or computation scheduling.

After presenting the aims of the framework we provide an overview of how these aims
are met, followed by an in-depth description of the programming model of the system. Subse-
quently some implementation considerations are described and a reference section for the entire
programming model is provided, together with a walk-through of the current state of the graph
in regards to the clinical 3D retrieval prototype.

2.1 Aims of the scientific computing framework
Provide a clear structure of the entire system The many parts of complex, state-of-the-art

computer vision processing pipelines need to be easy to define, to represent and to com-
municate across developers.

Allows to focus on the core methods Researchers should be able to focus on their core com-
petence and develop novel algorithms. The systems engineering aspects required in large
scale systems should be handled by the system.

Ensure that results match the current input / parameter settings In complex computing sys-
tems that process different data sets, and contain a variety of components, dependencies,
and parameters, reliable dependency and parameter tracking is necessary. Managing this
manually is error prone. In practice it often leads to uncertainties regarding intermediate
algorithm-, data-set-, parameter- and result versions. The developed framework should
track the changes of the algorithms, data-sets and parameters and guarantee that the re-
sults returned are computed exactly as specified in the system definition.

Allow to reuse computations As one of the consequences of the above uncertainties, inter-
mediate results are often recomputed to verify that they are up to date. The framework
should automatically and reliably reuse intermediate results where possible.

Handle caching / persistence The handling of data persistence shall be done automatically.
Researches shall never have to load a certain file with a certain naming convention which
(hopefully) contains the right intermediate results from last year.

Be easy to use The framework programming model should be easy to understand and use even
by novice programmers. System definition should be possible with a minimum number
of different semantic concepts.

Allow to quickly build and evaluate variants of the system One of the requirements of day
to day research is the ability to run only sub-parts of the system, with different parameters,

Page 6 of 17

D2.5 Report on the anatomical structure identification and localization

on different data-sets. The framework should make this as easy as possible and not pose
any versatility restrictions.

Reproducibility The result of a run should be completely determined by the systems definition.
E.g. persistent intermediate results can be deleted at will with the next request from
the system returning exactly the same results, triggering intermediate computations as
necessary.

Scheduling / parallelism / scalability The user should not be concerned with starting or schedul-
ing the computations. The inherent parallelism in the systems should be automatically
exploited and computations should be scheduled on as many cores and machines as are
available at any point.

Suitable for off-line and on-line tasks The framework should optimally support long-running,
off-line tasks as encountered in large-scale machine learning, as well interactive on-line
tasks such as those occurring in the back-end of an image retrieval application.

Insight into computing activity The framework needs to provide the researcher with a de-
tailed overview of the currently running computations and the status of each part of each
system.

Insight into (intermediate) results The results generated in each node of the system should
be visualized so the researcher can inspect and diagnose the behavior of the system.

Access to intermediate results Even while computationally costly processes with long run
times are still running, the framework should provide easy access to the results of the
already performed intermediate computations.

Computing platform The framework should be operating system agnostic and also work in
heterogeneous environments. The Matlab programming language should be used, as it is
the most widely used language in the computer vision and machine learning community
for algorithm development and rapid prototyping.

Performance / framework overhead The time and space overhead required by the framework
in addition to the actual node runtimes / storage requirements should be minimal.

2.2 Overview of the scientific computing framework
The proposed computing framework is based on the idea of structuring the calculations as a
map-reduce graph, as popularized by the seminal publication [1] by Google and widely imple-
mented in the Hadoop framework 1. It is strongly influenced by systems aiming to separate the
algorithmic idea from the practical details of data-handling, persistence and scheduling such as
the Halide programming language2.. We extend the basic idea of map reduce to fit within the
specific requirements of practical research on the one hand and large scale computer vision sys-
tems on the other hand. Structuring the computations as a map-reduce graph allows to address
all the objectives raised in section 2.1:

1http://hadoop.apache.org
2http://halide-lang.org

Page 7 of 17

D2.5 Report on the anatomical structure identification and localization

Clear structure The map-reduce graph models the data-flow of the system, which is an intu-
itive way of looking at the entire system of computations.

Focus on core methods The framework drastically reduces the gap between the core algorithm
and its application in practice. The nodes directly implement the scientific core of the sys-
tem, while the entire management of data and computations is handled by the framework.

Results matching definition As there is no manual interaction for running experiments and
handling data the framework can ensure that the results provided match a given system
definition. This is ensured even in the case of complex and long-running tasks with large
scale data.

Reuse computations The framework is dependency-tracking, i.e. when the algorithm in a
node or a parameter governing a node’s behavior changes, only the computations affected
by this change are rerun.

Handle caching / persistence For each node, i.e. a computation definition, it can be specified
whether the node’s output should be persistent, i.e. saved on disc. Whether a node’s
output should be saved or the node run every time is a space / time design choice which
is controlled by a simple parameter. As a node is not concerned with persistence or
scheduling no changes to the node are required.

Straightforward to use The system has been developed to make it easy to use. The defini-
tion of the graph is a simple, human readable, hierarchical data structure and the node
definitions follow a very simple format.

Allow to quickly build variants of the system Often the final result of a research project is
a single system with one set of data and settings. During day to day research many
variants of the elements of a system are investigated, by different researchers, on different
data sets. The framework makes no assumption of one master system with variants, but
each use case can be its own system. Only due to the fact that parts of the systems are
overlapping the benefits of i.e. the reduced number of computations are achieved.

Reproducibility As both the framework and the definition of the system are fully versioned
and each step is dependency tracked, results can be reliably reproduced. For example,
intermediate results can be safely deleted, as they will be recreated as necessary.

Scheduling / parallelism / scalability A major design goal of the system is the separation of
the algorithms and the data handling / computation scheduling. The research is only
concerned with algorithm design, not with data persistence or with running compute jobs.
The systems definition and a result request provide enough information to the framework
such that it is able to produce a response to the request. Due to the natural parallelism
throughout much of typical map-reduce graphs, the computations can be automatically
scheduled across several cores and machines in a cluster. This also provided automatic
scalability even to very large scale problems.

Insight into computing activity As the framework is designed to handle many computations
with long run times it is important to provide the user with information on the status of

Page 8 of 17

D2.5 Report on the anatomical structure identification and localization

each request. This is provided through very detailed status pages which show compute
progress as well as detailed error messages for failed computations.

Insight into (intermediate) results As part of the above status pages detailed information of
each result of each node is provided. This includes a graphical representation of the result
as well as numerical properties of the result, like minima and maxima. Additionally,
for each node summary statistics of the results are provided, e.g. the mean value of all
individual minima, or the presence of Not-a-number values in any of the results. This
information provides in-depth insight into the systems results and provides a powerful
means for diagnosis.

Access to intermediate results Each intermediate result is easily accessible as soon as it is
computed. Not only in the status pages but programmatically, for each node the already
computed results can be easily loaded. For example, when thousands of images need to
be preprocessed, the researcher can already start working with the first few results, while
the entire data set might take weeks to compute.

Computing platform The entire framework is implemented in Matlab. It can be easily used
on all major operating systems and hardware platform. Its internal scheduler allows to
easily deploy it on a cluster with shared storage.

2.3 Terminology
To clarify the following presentations a small set of terms is defined, in the context of the
proposed framework. A graphical representation of these terms can be seen in Fig. 1.

Framework The framework allows to defined, nodes, graphs, domains and parameters and can
subsequently answer the requests of the researcher.

System A system is defined using the frameworks, and consists of a graph, the nodes, one or
more domains and some parameters. Once a system is defined and made known to the
framework, a specific request for one of the nodes can be answered by the framework.

Item An item is the smallest entity of the systems input. For example, the filename of a file-
name, or a number, or a matrix.

Domain A domain is a ordered list of data items marked for processing. For example, in an
image retrieval training system, the domain might be a list of image filenames, or a list of
identifiers (IDs) that define a set data set of entries in a database.

Graph The graph defines the data-flow of the defined system. It consists of nodes, which are
connected to form a data-flow or dependency graph. Throughout this document, graphs
are drawn such that data flows from top to bottom, i.e. a node depends on the nodes above
it to which it is connected to. Each item in a domain is pushed trough the graph from top
to bottom.

Node A node encapsulates a specific algorithm or operation. For example in a simple image
processing pipeling the graph might consist of the nodes ”Image”, ”Kernel”, ”Filterered
Image”.

Page 9 of 17

D2.5 Report on the anatomical structure identification and localization

ResizedImage

Image Kernel

FilteredImage

ImageTable

Domain: "Image1.jpg", "Image2.png", "Image3.tif"

Map node Reduce node

Map node

Map node

Reduce node

single output

single output

1 output per item

Figure 1: Simple example of a map-reduce graph. Double borders indicate map nodes and
per-item connections, single borders indicate reduce nodes which only produce a single
output.

Map node A map node performs an operation on a single item. Either the item is part of a
domain or the output of a precursor node. It can perform any operation , while ensuring
that given a specific version of the node (specified as a hash value of the definition of a
node), a specific input and the same set of parameters it always returns the same output.

Reduce node A reduce node sees all items of a domain at the same time. As such it can for
example compute their average, or compute an index of all the items.

Request A request tells the framework, given a graph, which node should be computed over
which domain (and with which parameters). The framework can either invoke the neces-
sary computations or load an already computed version.

Parameters Parameters are always bound to a specific node and can thus influence its behavior.
The framework assumes that the output of a node can be different for two different values
of a parameter.

2.4 Illustrating Example
To explain the main components of the system, in the following we will walk through an exam-
ple system definition, shown in Fig. 1 before describing the components in detail in section 2.5.
We will look at the most important properties described in the previous section in the context
of this example. In the example, we are computing an image composed of several thumbnails,
which get processed / filtered, then resized to a common height and are finally assembled into a
single image where they are placed left to right.

Page 10 of 17

D2.5 Report on the anatomical structure identification and localization

The domain is composed of three items, in this case the ordered strings Image1.jpg,
Image2.png and Images3.tif. Each of the images is loaded in node Image, it is thus a map
node. It gets e.g. Image1.jpg as input and has to return the corresponding image as a matrix.

The next node, FilteredImage, whose task is to pre-process the image, depends on both
the output of Image and Kernel. Kernel is a node which is independent of the domain, and
always returns a Gaussian kernel of a certain width (specified by its parameters). It is thus a
reduce node, providing a single output. FilteredImage, being a map node, is computed for
each item and gets the loaded image and the kernel as input. It performs its filtering operation
and return a filtered image. In ResizedImage, again a map node, the input image is resized
proportionally to a certain height. Finally, ImageTable has the task of combining all images. It
thus needs access to all items, and is a reduce node. It produces a single output: the combined
image.

Framework behavior during algorithm development Let’s view the framework’s behavior
in the context of ongoing algorithm development. This involves many variations and itera-
tions of experiments on the system. For example, what happens if the height parameter of
node ResizedImage is changed and the output of ImageTable is requested? The framework,
through the dependency graph, knows that only the output of ResizedImage and ImageTable
can be affected by a change to the height parameter. It can therefore safely load the results of
FilteredImage, apply the operation in ResizedImage and then ImageTable and return the
result. Note how the minimal number of necessary computations was performed. Additionally,
all outputs are versioned, so a request for ImageTable with the original height parameter will
return immediately without computations, with the loaded result for ImageTable.

What happens if we change the domain? Let’s assume a forth image filename, Image4.jpg
gets added. And again we request ImageTable. The only computations performed by the
framework are the invocations of Image, FilteredImage and ResizedImage for the new item,
as well as a call to ImageTable. If we change the domain to consist only of Image1.jpg and
Image2.png, only ImageTable will be invoked, as this is the only node whos output is not yet
known.

All requests and changes to parameters can be performed independently by different re-
searchers at the same time, without any conflicts, and the framework ensures to always return
the results corresponding to the system’s definition, with the minimal number of necessary
computations performed.

2.5 Graph and node definition
In the following we describe the definition of the graph and its nodes, using the example de-
scribed above. The definition is performed by specifying a Matlab structure, where each field
corresponds to one node in the graph. Each of these fields is in turn a structure, so the definition
of a graph is a single, hierarchical data structure.

Each node can specify a function handle for either a map- or a reduce function, as well as
the nodes it depends on and, optionally, default parameters. Additionally, each node has several
properties which control how the framework performs persistence and scheduling, but these
properties do not change the behavior of the algorithm specified in the function handle. This

Page 11 of 17

D2.5 Report on the anatomical structure identification and localization

is part of the reason why the algorithmic details are entirely separated from the persistence /
scheduling details.

The following code specifies the algorithm presented in section 2.4. It shows the hierarchical
data structure used to define a system depicted in Fig. 1, with each node specifying either a map
or a reduce function and accompanying parameters as well as the dependency definitions.

graph.Image.map = @(p,item) fm.imread(item);
graph.Kernel.reduce = @(p,items) fspecial(’gaussian’,[6 6]*p.std, p.std);
graph.Kernel.params.kernel.std = 1;

graph.FilteredImage.map = @(p,item) imfilter(item.Image,item.Kernel);
graph.FilteredImage.needs = {’kernel’, ’image’};

graph.ResizedImage.map = @(p,item) imresize(item.FilteredImage, p.height, ...
size(item.FilteredImage,2)*p.height/size(item.FilteredImage,2);

graph.ResizedImage.needs = {’FilteredImage’};
graph.ResizedImage.params.ResizedImage.height = 256;

graph.ImageTable.reduce = @combineImages
graph.ImageTable.needs = {’ResizedImage’};

function r = combineImages(p,items)
r = cell(1,numel(items));
for i = 1:numel(items)
r{i} = feval(items{i}.ResizedImage);

end
r = cell2mat(r);

2.6 The 3D Retrieval prototype graph
The entire 3D retrieval system is structured as one connected map-reduce graph, depicted in
Fig. 2. This entails both the off-line, long-running part of indexing the visual and semantic data
(above the red line) as well as the interactive, on-line back-end for the retrieval graphical user
interface (GUI) (below the red line).

In Fig. 2, data flows from top to bottom, where each double-bordered box is executed once
per medical volume (such as those components computing visual features for individual vol-
umes). Single-bordered boxes are executed once (such as the indexing operations over all vol-
umes, returning a single index).

A detailed description of the entire retrieval system shown in the graph is provided in deliv-
erable D9.4.1. In the following, we will thus focus on the nodes which are part of the localiza-
tion module.

Fig. 3 gives a more detailed view on the framework components that perform localization
and anatomical structure identification during indexing.

Volume alignment and atlas registration The main tasks of the data preparation are the
coarse alignment of the volume to a whole body reference, followed by an affine and non-rigid

Page 12 of 17

D2.5 Report on the anatomical structure identification and localization

Haar

Supervoxel

centers

Grayvaluehist

semanticDictionaries

Terms

TermVocabulary

SemanticDesc

LabelingXYZ

visualEmbedding

LBP

Visual Words

BVW

euclidindex

reg2atlasAffine

SupervoxelLabeling

colearning

semantic
Embedding

downsampled
VolumeIntensityAtlas

LabelAtlas

LandmarksXYZ

LandmarkAtlas
reg2atlas
NonRigid

Volume

Landmarks

Orientation
Volume ID

id2featureind

Online Query
Offline Training

productQuantizerLookup

FragmentCenter

Minitature
TrainingData

OrientedVolume

RegionMask

semantic
Generatlizations

VolumeSiz

querysps

productQuantizer

Labeling

affineRegDE

queryfeatures

euclidlookup

retrieval

embeddingferns

embeddingfernslookup

retrievaloverlay

Supervoxel Volume

Figure 2: Current state of the MUW 3D retrieval map-reduce graph. Note how the graph
describes both the long-running off-line training as well as the interactive, on-line retrieval
back-end powering the user interface.

registration to the corresponding atlas. Currently, the whole body atlas consists of a whole body
CT template (which is represented by node IntensityAtlas) and has organs labeled by medical
experts on a per-voxel basis (represented by LabelAtlas). This atlas will be extended regard-
ing additional modalities (MRI, contrast enhanced modalities). Separate indices can be built
for differnt body regions, and the nodes regionID and regionMask are in charge of masking
the relevant subset of the label atlas. Each volume is first oriented according to the DICOM
header (Orientation/OrientedVolume) and down-sampled to match the miniature resolution
necessary for the initial coarse location estimate [3]. MiniatureTrainingData and Fragment-
Center estimate the approximate body region of the volume in question in the coordinate frame
of the whole body reference. This information is then used to initialize an affine registration
(reg2atlasAffine). The output of this registration is used as initialization for the non-rigid reg-
istration of the volume to the atlas.

Page 13 of 17

D2.5 Report on the anatomical structure identification and localization

Figure 3: Graph of the localization module

Organ label mapping Once the registration is finished, the annotated organs are transferred
from LabelAtlas/RegionMask that corresponds with the template using the spatial transform
obtained by the registration steps. This provides a Labeling, of the same size as the input
volume. Each voxel in the input volume is assigned an organ label.

3 Localization components developed in KHRESMOI
In the following we outline the algorithmic components developed that are relevant for the
graph nodes performing localization. Part of them have been described in Deliverable D2.2
(features), Deliverable D2.3 (evaluation), and Deliverable D2.4 (learning). The algorithms that
for the localization framework are designed with the objective to maximize generalizability,
and scalability. There are three main components that have been developed in the course of
KHRESMOI and are part of the localization module:

1. A miniature based coarse localization of medical imaging volumes forms the initial step
in the current localization process.

2. Atlas mapping refines the initial correspondence, and assigns each voxel in each volume
a corresponding position in a reference space that is linked to a label atlas.

3. Accurate localization of anatomical landmarks in the indexed volumes - in addition to
organ labels - is the objective of two algorithms. The first uses local appearance together
with a statistical shape model to obtain an accurate location estimate of landmarks. The
second algorithm is able to localize sets of landmarks with very high speed.

3.1 Coarse miniature based localization
This algorithm consists of a training component (MiniatureTrainingData) that is executed
during indexing , and a localization component that is executed during retrieval (FragmentCenter).

Page 14 of 17

D2.5 Report on the anatomical structure identification and localization

In this first step the indexing framework identifies the coarse position of a medical imaging vol-
ume in a whole body reference space [2]. During training, the center positions for a corpus
of several thousands of volumes are annotated by experts. For these volumes miniatures are
constructed that form a sampling of the possible appearances sufficiently dense for retrieval.
This is similar to [8], but due to the constraint anatomical domain, a significantly lower number
of examples is sufficient to sample the appearance space. The training algorithm builds a kd-
tree [7] from the miniature descriptors and during localization the center position of a volume
is estimated by means of k-nearest neighbor regression based on the annotated examples. A
detailed description of the algorithm and a corresponding evaluation can be found in [2] and
Deliverable D2.3.

3.2 Mapping anatomy labels to individual volumes
After estimating the coarse position of each volume in relation to the human anatomy a fine
grained mapping between a whole body reference and the volume is calculated via fragment
registration. The fragment bundling algorithm that constructs the unbiased whole body template
has been published in [6] and has been explained in detail in KHRESMOI Deliverable D2.4.
During volume to template mapping, each volume is registered to the segment of the whole body
template that corresponds to its likely position determined by position estimates in an iterative
process. Following the initial miniature based localization, an affine, and a non-rigid registration
of the imaging data to a whole body template are performed. They yield a mapping of each voxel
in the volume to a position in the whole body reference space. In KHRESMOI Deliverable D2.4
and [6] we describe how to learn such as template from a large set of medical imaging volumes.
To assign an anatomical structure label to each voxel a label atlas that corresponds to the whole
body template is mapped to the individual volumes based on the transforms obtained by the
registration. This label atlas is hierarchical following the RadLex ontology. After this mapping
features and indexes that cover specific anatomical structures at different levels of detail (e.g.,
liver, abdomen) can be built from the entire population.

3.3 Landmark configuration localization
In addition to whole organ mapping, we have developed components that can localize individual
anatomical landmarks in medical imaging data. The algorithm that detects landmark configu-
rations follows a two step approach and has been published in [5]. Its learning and localization
methodology is described in detail in KHRESMOI Deliverable D2.4. Given an input volume
the algorithm first generates a set of hypotheses locations for each landmark. This hypotheses
are based on a global classification of image appearance based on local Hough Forests. In the
second step the possible configurations of landmarks formed by all hypotheses (i.e., landmark
candidates) are disambiguated based on a statistical shape model learned during training on a
small annotated sample set.

A Markov Random Field (MRF) represents the relationships among the landmarks, and
the match between the appearance of each hypothesis and the corresponding prototype. The
optimal labeling of the MRF yields a reliable estimate for all landmark locations that are part
of the configuration. The algorithm performs global search in a volume without the need for
initialization. Furthermore, the individual label weights assigned to the MRF by the observed

Page 15 of 17

D2.5 Report on the anatomical structure identification and localization

data can serve as a means to detect outliers, or missing landmarks. Typically the number of
landmark candidates is low. This is a critical property that allows the algorithm to scale well to
high-resolution 3D imaging data.

3.4 Fast landmark localization
Similar to the approach described in Section 3.3 an alternative landmark localization approach
focuses on improving speed during localization. The approach, first published in [4], is di-
vided into a training phase and a localization phase. During training the algorithm creates a
multi-scale codebook of image patches and landmark positions. It represents local appearance
that is specific to landmarks. During localization this codebook is traversed starting from coarse
scale image representation to increasingly higher resolution image patches. During this iterative
process that starts with a representation of the image similar to the miniature resolution the land-
mark estimate becomes increasingly accurate. At each step landmark estimates are regularized
by a linear statistical shape model, that represents the variability in the training set population
based on their covariance structures. The resulting algorithm is extremely fast, while achieving
high accuracy and reliability in landmark localization.

4 Conclusion
The present deliverable describes the computational framework for localization and anatomical
structure identification in the KHRESMOI large scale biomedical image retrieval system. It
draws on methodology developed in the course of the project, and described in previous deliv-
erables. The focus of this deliverable is the description of how these algorithms are integrated
in an indexing and retrieval framework.

During indexing the localization and structure identification assigns each voxel in the in-
dexed data a location in a whole body reference space, and a corresponding anatomical label.
During retrieval query regions are mapped to this atlas, and corresponding location specific
indices are used for pathology specific retrieval.

Even-though the current status yields promising results there are several limitations that
have to be addressed in the future. First, a single whole body reference space is limited in the
representational power of the substantial variability present in the population and corresponding
approaches have to be developed that accurately represent anatomical details. Multi-modal ap-
proaches have to be devised to accurately match corresponding data that is acquired in different
modalities. The accurate localization of landmarks has to be integrated in the voxel labeling
and organ identification framework. Lastly, the individual components have to be optimized
to increase robustness with regard to pathological changes, and overall reliability and accuracy
in location mapping, and labeling. We will work towards addressing these issues in the final
project year.

Page 16 of 17

D2.5 Report on the anatomical structure identification and localization

5 References

[1] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI, 2004.

[2] Rene Donner, Sebastian Haas, Andreas Burner, Markus Holzer, Horst Bischof, and Georg
Langs. Evaluation of Fast 2D and 3D Medical Image Retrieval Approaches based on Image
Miniatures. In Proc. MICCAI Workshop on Medical Content-based Retrieval for Clinical
Decision Support, 2011.

[3] René Donner, Sebastian Haas, Andreas Burner, Markus Holzer, Horst Bischof, and Georg
Langs. Evaluation of fast 2d and 3d medical image retrieval approaches based on image
miniatures. In Medical Content-Based Retrieval for Clinical Decision Support, pages 128–
138. Springer, 2012.

[4] René Donner, Björn Menze, Horst Bischof, and Georg Langs. Fast Anatomical Structure
Localization Using Top-down Image Patch Regression. In Proc. MICCAI Workshop on
Medical Computer Vision, 2012.

[5] René Donner, Björn Menze, Horst Bischof, and Georg Langs. Global Localization of 3D
Anatomical Structures by Pre-filtered Hough Forests and Discrete Optimization. Medical
Image Analysis, in press, 2013.

[6] Matthias Dorfer, René Donner, and Georg Langs. Constructing an un-biased whole body
atlas from clinical imaging data by fragment bundling. In Proc. MICCAI’13, 2013.

[7] Beng Chin Ooi, Ken J McDonell, and Ron Sacks-Davis. Spatial kd-tree: An indexing
mechanism for spatial databases. In In Proc. IEEE COMPSAC Conf, pages 433–438, 1987.

[8] Antonio Torralba, Rob Fergus, and William T Freeman. 80 Million Tiny Images: A large
Data Set for Nonparametric Object and Scene Recognition. TPAMI, 2008.

Page 17 of 17

