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Abstract

The Khresmoi project is building a multi-lingual search and access system for biomedical
information  and  documents.  The  project  is  using  automatic  recognition  of  medical
entities  in  text,  such  as  Diseases  and  Drugs,  to  assist  with  that  search.  Automatic
recognition of these entities is trained by manual correction of machine annotations.
Manual correction proceeds iteratively. That is, an initial set of automatic annotations
are corrected,  these corrections  are used to improve the automatic application,  this
improved application used to generate further annotations for correction, and so on.
Improvements  are  generated  in  two  ways.  In  the  first,  an  evaluation  between  the
automatic annotations and the corrections is used to drive an error analysis, and thence
improvements  to  application  dictionaries,  heuristics  and  grammars.  In  the  second,
manual corrections are used to provide entity features for a machine learned statistical
model  of  the  entities.  Results  show  the  approach  to  lead  to  an  initial  measurable
increase in performance, before plateauing.

__________________________________
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1 Executive summary

 The Khresmoi project is using automatic recognition of medical entities in text, such
as Diseases and Drugs, to assist with search of biomedical documents.

 Automatic recognition is trained iteratively using manually correction of automatic
annotations in text.

 An initial set of automatically created annotations is presented to manual annotators
for correction.

 Corrections are used to improve the performance of the automatic application.

 This improved application is then used to generate  further automatic annotations for
correction, and so on, iteratively.

 This report examines how manual and automatic annotation have been coupled in the
Khresmoi project to improve annotation performance.

 It  describes  how  feedback  from  manual  annotation  is  used  to  modify  automatic
annotation through:

◦ error  analysis  and  the  development  of  dictionary  and  heuristic  based  entity
recognition

◦ the machine learning of models of the text to assist with automatic annotation.

 A description of the process and its results are presented.



2 Introduction

The Khresmoi project is building a multi-lingual search and access system for biomedical
information  and  documents  [17].  Several  technologies  are  used  to  improve  search,
including machine recognition of medical entities within text, and the linking of these to
the Khresmoi Knowledge Base. Automatic entity recognition is coupled iteratively with
manual improvement, in order to drive up performance. In summary, the process for
coupling automatic and manual entity recognition is as follows:

1. an initial machine annotated corpus is created;

2. this is corrected by human annotators;

3. the machine entity recognition model is updated with these corrections;

4. the steps are repeated.

This report describes the system used for the above process,  iteration of the process, and the
results achieved in those iterations.

2.1 Background

Manual annotations are corrected according to a set of guidelines and management protocols,
described in Khresmoi deliverable D1.1 “Manual  Annotation Guidelines  and Management
Protocol”[5],  which  were  themselves  based  on  the  project  requirements,  described  in
Khresmoi Deliverable D8.2 “Use case definition including concrete data requirements” [7].
An early version of the system used to create automatic annotations was described in D1.2
“Initial prototype for semantic annotation of the Khresmoi literature” [2], and early results of
the manual annotation described in D1.3 “Report on Results of the WP1 First Evaluation
Phase” [1].  The final  corpus of corrected annotations are collected into the Khresmoi
Manually  Annotated  Reference  Corpus,  which  is  released  as  D1.4.1  with  an
accompanying report [6].

2.2 Summary of this report

This  report  starts  with  a  description  of  the  application  used  to  generate  automatic
annotations, in the Section “Application description”. This is followed by a description of
the  process  in  which  manual  and  automatic  annotation  are  coupled,  in  the  Section
“Iterative  development  process”.  Development  iterations  are  then  described  in  the
remaining sections. “First iteration – improvement by error analysis” describes the initial
iteration, and conclusions that were drawn and improvements made based on an error analysis
of early manual corrections. “Second iteration – machine learned corrections” presents the
first set of results from machine learned corrections. Finally, the Section “Ongoing iterations”
describes the ongoing work to create further sets of automatic annotations for correction and
feedback in to the development process.



3 Application description

The annotation software is written as a GATE application pipeline [8, 9]. The initial version of
the  software,  as  described  in  [6],  was  distributed  and  run  on  GATECloud.net  [10]  and
equivalent  systems. This  initial  version was developed into the version described here,  in
response to (a) analysis of dictionary lookup terms in the application and (b) analysis of initial
manual corrections. The version described here may also be deployed via  GATECloud.net, or
within the Khresmoi crawling and indexing architecture.  The application is still  subject to
development as improvements are suggested by the manual annotation. The final application
will be reported by updates to this deliverable, and in future Khresmoi deliverables.

The application can be considered as a number of GATE pipelines, each of which consists of
GATE “Processing Resources” (PRs), with each document being run through the pipelines
and their component PRs  in order. The PRs and their function are described in the table
below, after which two sections detail key parts of the application, term lookup and machine
learning of entities.



Pipeline Processing resource Description

1. Lexico-syntactic pre-
processing

Tokeniser Standard GATE tokeniser, 

Sentence Splitter GATE regular expression 
based sentence splitter

POS Tagger GATE port of the Brill POS 
tagger

Morphological analyser FLEX based morphological 
analyser

Stemmer Porter stemmer

2. Content demarcation Check document type Checks document to see if 
following content PRs need to
be run

BoilerPipe GATE wrapper for BoilerPipe 
HTML content detector

Content grammars Content heuristics

3. Stop-words Gazetteer Mark all stop-words from 
gazetteer

4. Term lookup POS Tag selection grammar Sets flags on tokens, based on 
their POS, specifying whether 
they may be at the start, end 
or middle of a term

Gazetteer: abbreviations Look up abbreviations

Gazetteer: root forms Look up root forms of words

Gazetteer: stem forms Look up stem form of words

Gazetteer: string forms Look up string form of words

Merging grammar Merges all looked up terms 
into a single annotation type, 
UmlsLookup



Semantic type to name 
mapping grammar

Add human readable names 
for semantic types

5. Term disambiguation Term selection grammars Disambiguation heuristics: (1)
retain only the longest 
UmlsLookup, (2) then among 
all the longest, first select all 
that come from UMLS 
preferred labels,(3)  then 
choose among all of those the 
one with the highest CUI 
number (see reference [4])

6. Create annotations for 
correction

Gazetteer Find all UmlsLookups with 
semantic types that match 
those used in the manual 
annotation guidelines

Grammars Post process UmlsLookup 
annotations into the schema 
used by Khresmoi

7. Machine Learning Learning mode SVM, PAUM 
or other

Model learning only: learn 
model of Khresmoi entities 
from manual corrections to 
UmlsLookups, using 
UmlsLookups, other UMLS 
information and lexico-
syntactic annotations as 
features.

Application mode SVM, 
PAUM or other

Model application only: apply
the above model, using 
UmlsLookups, other UMLS 
information and lexico-
syntactic annotations as 
features, to predict Khresmoi 
entities.

Table 1: Application description



3.1 Term lookup: creating the gazetteers

The main data source used for the automatic semantic annotation of text within Khresmoi is
the Unified Medical Language System (UMLS) [3]. Gazetteers in step 4 above were created
from UMLS terms and concepts as represented in the Khresmoi knowledge base. For each
concept in UMLS, the UMLS provides a unique concept identifier, or CUI. Each concept is
also assigned to one of a small number of high level semantic types, from a semantic network.
The identifier of this type is known as a TUI.

A preferred label is given to each concept by UMLS, and a number of alternative labels. We
refer  to  these  as  “prefLabel”  and  “altLabel”  respectively.  These  form  the  basis  of  the
gazetteers.  As  the  UMLS  source  vocabularies  are  not  intended  for  natural  language
processing, however, there is much noise amongst these labels. We therefore carry out pre-
processing  to  remove  this  noise,  in  line  with  the  methods  described  by  [11,16].  A full
description of the gazetteer term processing follows:

1. A SPARQL query was used to retrieve, from the Khresmoi Knowledge Base:

◦ all prefLabels and their associated CUI URIs (instance) and direct semantic
type classes (TUI URIs) where the language tag of the label was “en”. This
resulted in 2 399 921 retrieved rows.

◦ all altLabels in the same way: 2 447 977 rows

2. After  filtering  so  that  only  the  direct  types  corresponding  to  TUIs  relevant  to
Khresmoi remain:

◦  prefLabel: 454 127 rows

◦ altLabel: 655 490 rows

3. The labels were then filtered as follows:

◦ filter out labels that contain an at (@) sign

◦ filter labels that contain “not otherwise specified”, “unspecified” “[NOS]” and
similar

◦ filter labels that contain “NEC”, “not elsewhere classified”, “unclassified” and
similar

◦ filter very short labels

4. Also, labels were changed in the following ways:

◦ remove angular brackets

◦ remove multiple spaces

◦ remove possessives

◦ remove brackets at the end

◦ remove parentheses at the end

◦ invert labels that have a single comma: e.g. “pain, dorsal” → “dorsal pain”



5. Then a final stage of filtering:

◦ remove labels with 6 or more tokens

6. If filtered labels match a pattern for being an abbreviation, the label gets added to an
abbreviation list, otherwise to a processed label (standard) list. After this we have:

◦ prefLabel standard: 317 619

◦ prefLabel abbreviations: 1 763

◦ altLabel standard: 561 603

◦ altLabel abbreviations: 12 225

7. All labels that match a list of stop words are filtered out, after which we have:

◦ prefLabel standard: 317 437

◦ prefLabel abbreviations: 1 761

◦ altLabel standard: 561 529

◦ altLabel abbreviations: 12 172

8. After this, all labels that are not abbreviations are run through GATE, tokenised, POS
tagged and stemmed and all word, number and symbol tokens are selected from the
processed labels. For each original label, three new labels are created:

◦ from all the original strings from the selected tokens

◦ from all the roots from the selected tokens

◦ from all the stems from the selected tokens

9. and from all of these, three gazetteer list files are created for each of the altLabel and
prefLabel lists, giving a total of 8 gazetteer lists:

◦ prefLabel, strings: 317 437

◦ prefLabel, roots: 317 430

◦ prefLabel, stems: 317 430

◦ prefLabel, abbreviations: 1 761

◦ altLabel, strings: 561 529

◦ altLabel, roots: 561 512

◦ altLabel, stems: 561 518

◦ altLabel, abbreviations: 12 172



3.2 Machine learning of Khresmoi entities

The final stage of the Khresmoi application consists of a GATE machine learning processing
resource. This operates in two modes.

In  the  first  mode,  training,  the  machine  learning  PR uses  manual  annotations  to  learn  a
classifier for the Khresmoi entities. The features for learning instances are provided by the
prior  steps  of  the  application.  In  the  second mode,  application,  the  machine  learning  PR
applies the classifier to unseen documents, constructing instances for classification from the
same features used for learning the classifier.

This is shown in the following diagram, adapted from [12]:

The GATE machine learning PR provides an abstraction layer over multiple machine learning
algorithms. The PR defines how instances should be constructed from text, and what should
be used to define features for those instance. It also deals with mapping multi-class problems
(such  as  the  one  faced  with  the  Khresmoi  entities)  into  a  series  of  binary  classification
problems.  The  PR  is  configured  by  providing  an  XML description  of  the  class  and  of
instances, and a definition of the machine learning library to be used.

The  machine  learning  algorithms  used  for  experiments  are  the  Support  Vector  Machine
(SVM) and Perceptron implementations shipped with GATE. The precise algorithm used will
be described with each set of results. Both of these algorithms may suffer from imbalanced
training  data,  i.e.  the  case where tokens comprising entities  are  less frequent  than tokens
comprising non-entities. The GATE implementations allow this unevenness to be taken into
account, by adjusting the margins between classes in the classifier hyperspace [13].

Figure 1: Machine learning application



The features used for constructing classification instances are taken from those described in
the following table, precise features will be given with each set of results. 

Annotation providing 
classification instance 
feature

Windowing Attribute of annotation used

Token From -n to n tokens on each 
side of the entity, n reported 
with each set of results

String

Part of Speech

Root

Orthography

UMLS gazetteer lookup From -n to n tokens on each 
side of the entity, n reported 
with each set of results

TUI (semantic type identifier)

CUI (concept identifier)

Table 2: Outline of machine learning features



4 Iterative development process

Manual and automatic annotation are coupled through an iterative process. This is illustrated
in the diagram below, with each step described in the text following the diagram.

Run application over unseen documents

An iteration starts  by running the full  application over unseen documents. Documents are
selected to:

 Be representative of the full Khresmoi document set.

 Be  within  parameters  that  make  them  straightforward  for  human  annotators  (e.g.
within certain length limits, and having contentful text).

 Reflect problems that need addressing, given the outcome of previous iterations.

Figure 2: Iterative development process



Human correction of annotations

Automatically annotated documents are uploaded up to GATE Teamware [14], an annotation
workflow web server. GATE Teamware allows complex annotation workflows to be executed
online.  These  workflows  may  include  distributed  manual  annotation  steps,  with  human
annotators being assigned a GATE Teamware account. In the case of Khresmoi, a workflow
has three criteria:

 Which documents need annotating

 How many manual  annotators  should  annotate  each  document  –  allowing double,
treble, or greater levels of annotation.

 Which human annotators should be used for this workflow

 Whether an addition “consensus” step is required.

As annotators login, Teamware assigns documents to them, in order to meet these criteria. If a
consensus step is required, then the results from individual annotators will be passed to a
further annotator for reconciliation of differences.

Quality control and performance metrics

Once a batch of documents has been completed, an initial analysis is carried out to ascertain
the  quality  of  the  batch.  This  includes  measurement  of  inter  annotator  agreement,  and
measurement of automatic / manual agreement (i.e. precision and recall). It should be noted
that this is not a formal evaluation against a gold standard, but a comparison of annotations to
manual corrections. At this stage, some documents or annotators may be rejected as outliers.
If no consensus set of annotations has been created in the previous step, annotations may be
combined by majority voting – i.e. an annotation will be accepted if it has been accepted by
the majority of annotators.

Manual error analysis

The  quality  controlled  batch  is  then  analysed  for  differences  between  the  automatic  and
manual  sets,  using tools  from the GATE quality  control  suite.  These include  a variety of
quality control measurements, together with difference viewers.

Improve grammars and heuristics

The error analysis is used to inform manual improvements to the application's grammars and
heuristics. For example, quality control may show that a particular kind of UMLS term is
leading to false positives. The heuristics for gazetteer filtering could be amended in response
to this. As another example, quality control may show that a only the head word of particular
kind of term is annotated automatically, and so grammar rules could be added to improve
recognition of the whole term.

Retrain classifier

In addition to the above grammar improvement step, the corrected documents are used to
retrain the entity classifier.



5 Summary of iterations

In total, eight iterations of the above process were carried out. These are summarised in the
following table:

Iter-
ation

Description Corpus Input application Output application

1 Initial 
experiments 
using UMLS; no
machine learning

Described in 
deliverable D1.3

Described in 
deliverable D1.2

First Prototype, described 
Section 3 

2 Initial 
experiments 
using machine 
learning

Initial Gene 
Home Reference 
Corpus

First Prototype, 
described in 
Section 3

Second Prototype, described
in Section 3 (with ML 
model) V01

3 Knowledge 
based 
improvements 

C0504 First Prototype, 
described in 
Section 3 (V01)

V02

4 Knowledge 
based 
improvements 

C0512 V02 V03

5 Knowledge 
based 
improvements  
and first ML 
model for use in 
future iterations

C0524 V03  V05

 ML model trained 
from C0524 
corrections

6 Second ML 
model

C0701 V05 + ML model 
from previous 
iteration

V06 + ML model trained 
from C0701

7 Third ML model C0830 V06 + ML model 
from previous 
iteration

ML model trained from 
C0830 corrections

8 Fourth ML 
Model

C0925 V06 + ML model 
from previous 
iteration

No further changes

Table 3: Summary of iterations



Note  that  after  the  prototype  GATE  applications,  new  applications  were  given  version
numbers,  starting  at  V02.  V04  was  a  minor  version,  and  was  not  used  in  experiments.
Iterations are described further in the following sections. Iterations have been grouped in to
sections as follows:

First iteration: improvement by error analysis (Section 6)

This iteration took the application and corpus created in the first phase of Khresmoi, used the
application to create annotations on the corpus, and examined manual corrections of those
annotations to provide an error report. The error report was used to create the first prototype
described in Section 3  of this report. The corpus used is described in Khresmoi Deliverable
D1.3.

Second iteration – experiments in manual and machine learned corrections (Section 7)

This  iteration  was  used  to  perform  experiments  in  the  machine  learning  approach,  as
described in  Section  7.  The first  prototype,  as  created  by the  first  iteration,  was  used to
annotate  the  Gene  Home  Reference  corpus  described  in  Khresmoi  Deliverable  D1.4.1.
Manual corrections of this were used to train and evaluate a machine learning model, and to
carry out experiments on machine learning feature sets. The results of this evaluation and the
experiments are described in Section 7. The corpus used is described in Khresmoi Deliverable
D1.4.1.

Iterations 3 to 5: knowledge engineered improvements (Section 8)

The prototype application created in iteration 1 was further improved in iterations 3 to 5, on
analysis  of  errors  highlighted  by  the  manual  corrections  from three  corpora.  This  led  to
several  new  versions  of  the  prototype,  named  V02  to  V06.  The  changes  made  can  be
characterised as knowledge engineered changes: all required manual edits to rules, heuristics,
and gazetteers. The corpus used is described in Khresmoi Deliverable D1.4.1.

Iterations 6 to 8: machine learned models (Section 9)

Iteration 5 was also used to create a machine learned model of the manual corrections. This
was subsequently used with application V06 in iteration 6, to again create annotations for
manual correction and generation of a new machine learned model. This process was repeated
for iterations 7 and 8.  The corpus used is described in Khresmoi Deliverable D1.4.1.



6 First iteration – improvement by error analysis

6.1 Description

The  first  iteration  involved  no  machine  learning  of  corrected  annotations.  While  the
application used was analogous to the non-machine learning parts of the application described
above, the definition of annotations created differed, as described in D1.4.1 [6]. 

During this  iteration,  issues concerning the use of UMLS arose from an error analysis  of
manually  corrected  documents.  Although UMLS is a rich source of biomedical  terms,  its
source vocabularies were never created with natural language processing in mind. The use of
UMLS for NLP is therefore problematic, and within the first iteration, this was characterised
by three overlapping issues:

 High  degree  of  term  ambiguity  –  many  terms  in  UMLS  correspond  to  multiple
concepts.

 Low signal  to  noise ratio  – many terms  in UMLS can only  be understood in the
context of their source vocabulary (“heart” for example, may refer to the concept for
“mouse heart”). Many others are also ambiguous with words in general language.

 Large numbers of “non-content” terms, such as HTML menus, disclaimers etc., were
annotated leading to a large number of irrelevant and false positive annotations.

These issues led to problems with early batches used for manual correction:

1. The more annotations there are, the harder it is for manual annotators to correct the
annotations.

2. The number of resulting annotation types makes it difficult to construct meaningful
semantic search queries.

3. Text containing meaningful health information content was sometimes swamped by
non-content, making it hard for annotators to deal with.

As discussed in  [1]  the  approach we adopted to  deal  with the first  two problems during
manual annotation is based upon work reported in [4]. Essentially whenever more than one
UMLS annotation is created for the same document span only the annotation with the lowest
CUI is  retained.  The reasoning behind this  approach is  that  the lower the CUI, the more
general the concept. Keeping only the most general concept should result in fewer annotations
which still encode the same information.

The third problem was dealt with by demarcating content sections of text. In the application
described in  previous  sections,  this  task  is  carried  out  by a  GATE BoilerPipe  processing
resource.



6.2 Results

Corpora and results for this iteration are given in Khresmoi Deliverable D1.3 [1].

7 Second iteration – experiments in manual and machine
learned corrections

7.1 Description

The application used for the second iteration resulted from changes made in response to the
error analysis of the first iteration, as described in the previous section, and from changes to
the  gazetteers,  after  an  analysis  of  gazetteer  term lists  and of  annotated  documents  from
earlier iterations. The application also incorporated machine learning of entities, as a way to
take further corrections and feed them forward to further application improvements. These
two  changes  resulted  in  the  application  described  in  the  earlier  Section  “Application
description” .

The  corpus  used  for  this  evaluation  consisted  of  the  Initial  Corpus  described  in  the
accompanying deliverable, D1.4.1 “Manually Annotated Reference Corpus”, comprising 625
documents. As there was some change in the definitions of semantic types between this Initial
Corpus,  and those created  by the application,  the initial  corpus  was amended to map the
manual annotations to the annotations created by the application, as follows:

1. “Content”  annotations  were  created  from  “Section”  annotations:  the  Section
annotation was used from within the consensus set but if none is found there, one was
used from the manual annotation sets;

2. A new annotation type UmlsLookup was created wherever there was a Problem (i.e.
Diseases) or Anatomy annotation.  This was carried out for manual annotation sets,
consensus sets and for the original automatic pre-annotation set.

The UmlsLookup annotations (combined Problem, i.e. Diseases, and Anatomy) could then be
compared to the results from the original automatic annotation, and to results from the latest
automatic annotation.

For comparisons, the application was also amended to only create semantic annotations of the
same UMLS type as in the manual corpus.

7.2 Results

Results given in this and future section use standard definitions of Precision (P), Recall (R),
and F1 measure. Two variants of each are given:

 Strict,  where  for  two  annotations  to  match,  they  must  cover  exactly  the  same
document span;

 Lenient, where for two annotations to match, they must have overlapping document
spans.

The Lenient measure allows us to determine how much error is due not to a failure to find an
entity, but to a failure to find the correct extent of the entity (e.g. an application might miss



 adjectives that are commonly part of the entity label).

The first set of results compares the manual annotations from the Initial Corpus to two non-
machine learning applications:

 Initial  Prototype:  the  initial  prototype  application,  from which  manual  corrections
were made

 Second Prototype: the application reported in this document

The results of these evaluations are given in the following table:

Experiment Key annotations Response
annotations

Strict Lenient

P R F1 P R F1

First
prototype 

Manual  corrections
from first prototype

Automatic annotations
from first prototype

0.56 0.60 0.58 0.67 0.72 0.70

Second
Prototype 

Manual  corrections
from first prototype

Automatic annotations
from second prototype

0.58 0.64 0.61 0.71 0.78 0.74

Table 4: Results of second iteration

The second prototype shows small gains in both precision and recall, for the UMLS semantic
types  present  in  the  initial  corpus.  This  is  presumably  due  to  the  improvements  in  term
lookup, through improved gazetteers.

The  second  prototype  was  augmented  with  machine  learning  as  described  in  the  section
“Machine Learning of Khresmoi Entities” above, using the GATE Perceptron with Uneven
margins algorithm (PAUM). This application was used to predict chunks where a UMLS term
should  be  found,  again  training  and  comparing  against  manual  corrections  where  all
annotation types had been merged into a single type. As an initial test of the effectiveness of
manual annotations in improving annotation quality, the application was evaluated over two
folds with a 75% holdout. Several feature sets were evaluated, as described in the following
table:



Feature set

1 TOK 2 +TUI 3 +CUI 4 +THR 5 -SUR

Algorithm
and  options
(see  GATE
manual  for
option
descriptions)

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

POS, window
-3 to +3

Yes Yes Yes Yes Yes

Root,
window -3 to
+3

Yes Yes Yes Yes Yes

Kind,  -3  to
+3

Yes Yes Yes Yes Yes

TUI, -8 to +8 No Yes No Yes No

TUI -3 to +3 No No Yes No Yes

CUI -3 to +3 No No Yes No Yes

Thresholds Default Default Default Changed Default

Surround
mode

True True True True False

Table 5: Second iteration features

The results of evaluations of these feature sets are given below:



Experiment Key annotations Response
annotations

Strict Lenient

P R F1 P R F1

1 TOK

Manual  corrections
from first prototype

Automatic annotations
from second prototype
with PAUM

0.89 0.59 0.71 0.98 0.65 0.78

2 +TUI 0.90 0.65 0.76 0.98 0.70 0.82

3 +CUI 0.91 0.65 0.75 0.98 0.70 0.81

4 +THR 0.91 0.63 0.75 0.98 0.68 0.80

5 -SUR 0.30 0.45 0.36 0.60 0.91 0.72

Table 6: Second iteration feature experiment results

Token level  features alone give greater precision and worse recall  than in the non-PAUM
gazetteer applications reported in the previous table. This is to be expected: the PAUM is able
to  generalise  the  context  of  terms,  giving  precision  in  detecting  them,  without  the  noise
present in a dictionary. It does not, however, have the recall possible with a dictionary. These
results are broadly similar to those reported in [15], and the literature referenced there.

Additional UMLS lookup features (experiments 2 and 3) make use of the term dictionaries in
UMLS, and show some improvement  in  recall  over  token features  alone,  without  loss  in
precision. The approach in these experiments has successfully combined the precision of the
PAUM, with at least some of the recall of a dictionary. In general, performance is greater
when  combining  the  PAUM  with  dictionary  lookup.  Changing  thresholds  and  algorithm
surround mode makes little difference.



8 Iterations 3 to 5: knowledge engineered improvements

8.1 Description

Iterations 3 to 5 followed the same pattern as iteration 1, updating the application gazetteers,
pattern matching rules and heuristics in response to an error analysis of manual corrections.
These  were  therefore  purely  knowledge  engineering  changes,  with  no  machine  learning
component.

A different  corpus  was  used  for  each  iteration.  The  corpora  consisted  of  a  mixture  of
Wikipedia  and  other  Web  documents,  better  reflecting  the  actual  target  of  the  Khresmoi
application  than  the  Gene  Home  Reference  corpus  used  in  earlier  iterations.  Manual
corrections were made by five annotators, and a consensus set (majority vote) selected from
these. Full details of the corpus are given in Khresmoi Deliverable D1.4.1.

8.2 Results

The table  below gives  the performance of the  applications  created  at  each of these three
iterations. In each case, the key annotations are the consensus of annotations from the five
independent  annotators.  Evaluation  metrics  are  true  micro  averages,  i.e.  the  mean of  all
measures for each annotation type in each document. Definitions of strict and lenient metrics
are as before.

Iter-
ation

Corpus Key 
annotations

Response 
annotations

Strict Lenient

P R F1 P R F1

3 C0504 Manual 
corrections

Annotations from V01
pipeline

0.59 0.86 0.70 0.63 0.91 0.74

4 C0512 Manual 
corrections

Annotations from V02
pipeline

0.67 0.90 0.77 0.69 0.92 0.79

5 C0524 Manual 
corrections

Annotations from V03
pipeline

0.81 0.94 0.87 0.82 0.94 0.87

Table 7: Iterations 3 to 5, results

The evaluations show an improvement in Precision with no loss in the already high Recall.
Knowledge engineered changes were focussed on correcting false positives. Additionally, it
might be expected that manual corrections are more likely to spot false positives than false
negatives: it is easier for someone to scan annotations and deleted them where wrong, than to
read a full document and add in things that have been missed. This would impact evaluations,
potentially giving a falsely raised recall.



9 Iterations 5 to 8: machine learned models

9.1 Description

Iterations 5 to 8 built on the output of iteration 4 by creating machine learned models from
manual corrections, in a process analogous to that of iteration 2.

9.2 Results

Following the approach to machine learning from manually corrected annotations in iteration
2, optimal features for machine learning were first selected. Features for testing were grouped
in to sets, and models built and evaluated for each of these sets.

The following algorithm configuration options were kept constant (see the GATE user guide
for an explanation of each):

 Algorithm: PAUM

 PAUM parameters: p 1 -n 10 -optB 0.3

 Thresholds: default

 Surround mode: true

The PAUM implementation in GATE classifies each token as being either the beginning of an
entity,  the  end  of  an  entity,  or  neither.  Machine  learning  instances  are  tokens,  machine
learning features are defined relative to tokens. Features may be windowed, for example, we
could consider the part of speech of each of the tokens 3 to the left and 3 to the right of a
token to be features of that central token. In the description that follows, windowed features
are suffixed thus: [-n to +n], meaning the feature is 2n+1 features, at the token position and n
tokens to each side. Where no window is give the feature is constructed at just the token
position.

Features were constructed to make use of information added by the knowledge engineered
application, such as semantic types and information from the UMLS. It was intended that the
information guide machine learning model building. The knowledge engineered application
can add multiple entities at a given position, where it is unable to assign an unambiguous
meaning. Several features make use of the machine learning framework's default behaviour of
choosing one  of  these  entities  at  random as  a  feature,  whereas  other  features  have  been
constructed to make a best guess, or to combine unigrams of all possible guesses at this point.
These and other features are listed below.



 POS: Part of speech of the token at a position

 Root: Morphological root of the token at a position

 Kind: Orthographic kind of the token at a position (number, word etc.)

 TUI: UMLS Type identifier for a term found at underlying the given position by the
knowledge  engineered  application.  If  several  terms  exist  at  the  position,  then  the
algorithm chooses one randomly.

 CUI: UMLS Concept identifier for a term found at underlying the given position by
the knowledge engineered application.  If several terms exist at the position, then the
algorithm chooses one randomly.

 TUI / CUI unigrams: All unigrams of any UMLS terms found to be underlying the
given position by the knowledge engineered application.

 Khresmoi  type:  The  Khresmoi  semantic  type  (Disease,  Investigation,  Anatomy,
Drug) for a term at a position. If several terms exist at the position, then the algorithm
chooses one randomly.

 Best TUI / CUI / Khresmoi type: The TUI, CUI, or Khresmoi type of the knowledge
engineered application's best guess at which UMLS term underlying the position is
correct.

 Umls_Txxx: For each UMLS TUI, a binary feature is created that indicates if at this 
token position, there is an overlapping UMLS term with the TUI.

Feature sets constructed from these features are given in the following table:



Feature set

1 2 3 4 5 6 7 8 9 10 11

POS, window [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Root, window [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Kind, [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

TUI [-3 to +3] Yes No No No No No No No No Yes No

CUI [-3 to +3] Yes No No No No No No No No No No

TUI and CUI unigrams 
contained within the term

No Yes No No No No No No No No No

TUI and CUI unigrams [-3
to +3]

No No Yes No No No No No No No No

Khresmoi types [-3 to +3] No No No No Yes No No No Yes Yes No

Best Khresmoi type [-3 to 
+3]

No No No No No Yes No No Yes Yes Yes

Umls_Txxx [-3 to 3] No No No No No No Yes No No No No

Best TUI [-3 to +3] No No No No No No No Yes No No Yes

Table 8: Iterations 5 to 8, feature sets



Feature  set  selection  was  carried  out  with  corpus  C0524. For  evaluation  of  feature  sets,
machine learning was trained twice, on two random splits of 75% of the corpus, and tested on
the remaining 25%. The results of the two evaluations were micro averaged, and are given
below.

Feature set

Strict Lenient

P R F1 P R F1

1 0.8616 0.6519 0.7420 0.9008 0.6814 0.7757

2 0.4458 0.5088 0.4752 0.6454 0.7367 0.6880

3 0.4458 0.5088 0.4752 0.6454 0.7368 0.6880

4 0.7610 0.1463 0.2454 0.9240 0.1776 0.2979

5 0.8566 0.6307 0.7259 0.9026 0.6641 0.7646

6 0.8519 0.6580 0.7418 0.8955 0.6911 0.7794

7 0.8044 0.3776 0.5139 0.9015 0.4230 0.5757

8 0.8553 0.6480 0.7373 0.8992 0.6811 0.7751

9 0.8583 0.6789 0.7579 0.9006 0.7121 0.7951

10 0.8509 0.6730 0.7514 0.8919 0.7052 0.7874

11 0.8499 0.6725 0.7508 0.8922 0.7057 0.7880

Table 9: Iterations 5 to 8, feature experiment results

Feature  set  9  gave  the  best  F measure,  as  well  as  balanced  P and R measures,  and was
therefore  selected  for  use  in  all  future  machine  learning  iterations.  Three  iterations  were
carried  out  using  these  features.  As  before,  the  key  annotations  are  the  consensus  of
annotations from five independent annotators. Evaluation metrics are true micro averages, i.e.
the  mean of all measures for each annotation type in each document.



Iter-
ation

Corpus Key 
annotations

Response 
annotations

Strict Lenient

P R F1 P R F1

6 C0701 Manual 
corrections

Annotations fromV06 
pipeline, model 
trained on C0524

0.86 0.83 0.84 0.87 0.87 0.86

7 C0830 Manual 
corrections

Annotations fromV06 
pipeline, model 
trained on C0701

0.98 0.77 0.87 0.99 0.78 0.87

8 C0925 Manual 
corrections

Annotations fromV06 
pipeline, model 
trained on C0830

0.98 0.57 0.72 0.98 0.57 0.72

Table 10: Iterations 6 to 8: results

Iteration 6 shows a large increase in precision over iteration 5, with a 4% loss in recall. There
is an overall gain in F1. Iteration 7 shows a further large increase in precision to 0.99, with a
9% loss in recall. There is a small increase in F1. Iteration 8 shows a further large degradation
of recall.

Adding machine learning to the application allows us to improve precision. As is often the
case, this is traded against recall.

Considering the machine learning model as a vetoing model provides a possible explanation
for  the  results.  The  machine  learning  algorithm is  provided  with  a  number  of  candidate
annotations as features, from gazetteer lookup and from the knowledge engineered rules. The
model must select one or none of these candidates as positive, thus vetoing the others, and
disambiguating the annotations. If the model creation encodes, as is likely, that the candidate
annotations provide a high level of information about the correct result, then it will weight
these features very highly. It will therefore be unlikely to classify tokens as positive where
they do not lie within a candidate annotation, and be unable to create new positives. It will
become fitted to those annotations considered positive by the knowledge engineered portion
of the application, and be unable to find entities that have never been seen before. Recall will
therefore suffer when run over new data in a second or third corpora. As iterations proceed,
this is reinforced, and the model becomes over-fitted to the true positives accepted by the
manual annotators.



10 Conclusion

This report has described methods for coupling manual and automatic annotation of Khresmoi
entities,  in  an  iterative  process,  in  an  attempt  to  drive  improvement  in  the  automatic
annotation.   Improvements  are  made  in  two  ways:  manual  changes  to  grammars  and
heuristics; and re-training of a classifier.

Both  approaches  have  shown some success.  Manual  changes  to  grammars  and heuristics
resulted in a good improvements in both precision and recall when measured against corrected
annotations. Four iterations of classifier re-engineering against maual corrections has shown
that precision can be improved with no loss in recall, again when tested against the manually
corrected annotations.

Manually corrected annotations have also been used to select sets of features form which to
build machine learning classifiers. These classifiers have been used to generate further data
for  correction,  and  this  iteratively  fed  back  in  to  classifier  training.  This  did  lead  to
improvements  in  precision,  when  measured  against  manual  corrections.  Recall,  however,
suffered, and it is likely that continued iterations are over-fitting the models to the training
data. Optimal results were achieved after a single machine learned iteration.
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