
Grant Agreement Number: 257528

KHRESMOI

www.khresmoi.eu

Report on Coupling Manual
and Automatic Annotation

Deliverable number D1.4.2

Dissemination level Public

Delivery date 31st May 2013

Status Draft

Author(s)
Angus Roberts, Johann Petrak, Niraj
Aswani,

This project is supported by the European
Commission under the Information and
Communication Technologies (ICT) Theme
of the 7th Framework Programme for
Research and Technological Development.

Abstract

The Khresmoi project is building a multi-lingual search and access system for biomedical
information and documents. The project is using automatic recognition of medical
entities in text, such as Diseases and Drugs, to assist with that search. Automatic
recognition of these entities is trained by manual correction of machine annotations.
Manual correction proceeds iteratively. That is, an initial set of automatic annotations
are corrected, these corrections are used to improve the automatic application, this
improved application used to generate further annotations for correction, and so on.
Improvements are generated in two ways. In the first, an evaluation between the
automatic annotations and the corrections is used to drive an error analysis, and thence
improvements to application dictionaries, heuristics and grammars. In the second,
manual corrections are used to provide entity features for a machine learned statistical
model of the entities. Results show the approach to lead to an initial measurable
increase in performance, before plateauing.

Table of Contents

1 Executive summary..6

2 Introduction..7
2.1 Background...7

2.2 Summary of this report..7

3 Application description..8
3.1 Term lookup: creating the gazetteers..11

3.2 Machine learning of Khresmoi entities...13

4 Iterative development process..15

5 Summary of iterations...17

6 First iteration – improvement by error analysis...19
6.1 Description..19

6.2 Results...20

7 Second iteration – experiments in manual and machine learned corrections................20
7.1 Description..20

7.2 Results...20

8 Iterations 3 to 5: knowledge engineered improvements...24
8.1 Description..24

8.2 Results...24

9 Iterations 5 to 8: machine learned models...25
9.1 Description..25

9.2 Results...25

10 Conclusion..30

11 References...31

Index of Tables

Table 1: Application description..10

Table 2: Outline of machine learning features...14

Table 3: Summary of iterations...17

Table 4: Results of second iteration...21

Table 5: Second iteration features...22

Table 6: Second iteration feature experiment results..23

Table 7: Iterations 3 to 5, results...24

Table 8: Iterations 5 to 8, feature sets...27

Table 9: Iterations 5 to 8, feature experiment results..28

Table 10: Iterations 6 to 8: results...29

List of figures

Figure 1: Machine learning application..13

Figure 2: Iterative development process...15

List of abbreviations

CUI Concept Unique Identifier

F1 Harmonic mean of precision and recall, weighted equally

for both precision and recall

GATE General Architecture for Text Engineering

HON Health on the Net

HTML Hyper Text Markup Language

IAA Inter Annotator Agreement

ML Machine Learning

NLP Natural Language Processing

P Precision

PAUM Perceptron Algorithm with Uneven Margins

POS Part of Speech

PR Processing Resource (GATE component)

R Recall

RadLex Radiology Lexicon

SPARQL RDF Resource Query Language

SVM Support Vector Machine

TUI Term Unique Identifier (UML ID)

UMLS Unified Medical Language System

URI Uniform Resource Identifier

URL Uniform Resource Locator

USFD University of Sheffield

UTS UMLS Terminology Service

1 Executive summary

 The Khresmoi project is using automatic recognition of medical entities in text, such
as Diseases and Drugs, to assist with search of biomedical documents.

 Automatic recognition is trained iteratively using manually correction of automatic
annotations in text.

 An initial set of automatically created annotations is presented to manual annotators
for correction.

 Corrections are used to improve the performance of the automatic application.

 This improved application is then used to generate further automatic annotations for
correction, and so on, iteratively.

 This report examines how manual and automatic annotation have been coupled in the
Khresmoi project to improve annotation performance.

 It describes how feedback from manual annotation is used to modify automatic
annotation through:

◦ error analysis and the development of dictionary and heuristic based entity
recognition

◦ the machine learning of models of the text to assist with automatic annotation.

 A description of the process and its results are presented.

2 Introduction

The Khresmoi project is building a multi-lingual search and access system for biomedical
information and documents [17]. Several technologies are used to improve search,
including machine recognition of medical entities within text, and the linking of these to
the Khresmoi Knowledge Base. Automatic entity recognition is coupled iteratively with
manual improvement, in order to drive up performance. In summary, the process for
coupling automatic and manual entity recognition is as follows:

1. an initial machine annotated corpus is created;

2. this is corrected by human annotators;

3. the machine entity recognition model is updated with these corrections;

4. the steps are repeated.

This report describes the system used for the above process, iteration of the process, and the
results achieved in those iterations.

2.1 Background

Manual annotations are corrected according to a set of guidelines and management protocols,
described in Khresmoi deliverable D1.1 “Manual Annotation Guidelines and Management
Protocol”[5], which were themselves based on the project requirements, described in
Khresmoi Deliverable D8.2 “Use case definition including concrete data requirements” [7].
An early version of the system used to create automatic annotations was described in D1.2
“Initial prototype for semantic annotation of the Khresmoi literature” [2], and early results of
the manual annotation described in D1.3 “Report on Results of the WP1 First Evaluation
Phase” [1]. The final corpus of corrected annotations are collected into the Khresmoi
Manually Annotated Reference Corpus, which is released as D1.4.1 with an
accompanying report [6].

2.2 Summary of this report

This report starts with a description of the application used to generate automatic
annotations, in the Section “Application description”. This is followed by a description of
the process in which manual and automatic annotation are coupled, in the Section
“Iterative development process”. Development iterations are then described in the
remaining sections. “First iteration – improvement by error analysis” describes the initial
iteration, and conclusions that were drawn and improvements made based on an error analysis
of early manual corrections. “Second iteration – machine learned corrections” presents the
first set of results from machine learned corrections. Finally, the Section “Ongoing iterations”
describes the ongoing work to create further sets of automatic annotations for correction and
feedback in to the development process.

3 Application description

The annotation software is written as a GATE application pipeline [8, 9]. The initial version of
the software, as described in [6], was distributed and run on GATECloud.net [10] and
equivalent systems. This initial version was developed into the version described here, in
response to (a) analysis of dictionary lookup terms in the application and (b) analysis of initial
manual corrections. The version described here may also be deployed via GATECloud.net, or
within the Khresmoi crawling and indexing architecture. The application is still subject to
development as improvements are suggested by the manual annotation. The final application
will be reported by updates to this deliverable, and in future Khresmoi deliverables.

The application can be considered as a number of GATE pipelines, each of which consists of
GATE “Processing Resources” (PRs), with each document being run through the pipelines
and their component PRs in order. The PRs and their function are described in the table
below, after which two sections detail key parts of the application, term lookup and machine
learning of entities.

Pipeline Processing resource Description

1. Lexico-syntactic pre-
processing

Tokeniser Standard GATE tokeniser,

Sentence Splitter GATE regular expression
based sentence splitter

POS Tagger GATE port of the Brill POS
tagger

Morphological analyser FLEX based morphological
analyser

Stemmer Porter stemmer

2. Content demarcation Check document type Checks document to see if
following content PRs need to
be run

BoilerPipe GATE wrapper for BoilerPipe
HTML content detector

Content grammars Content heuristics

3. Stop-words Gazetteer Mark all stop-words from
gazetteer

4. Term lookup POS Tag selection grammar Sets flags on tokens, based on
their POS, specifying whether
they may be at the start, end
or middle of a term

Gazetteer: abbreviations Look up abbreviations

Gazetteer: root forms Look up root forms of words

Gazetteer: stem forms Look up stem form of words

Gazetteer: string forms Look up string form of words

Merging grammar Merges all looked up terms
into a single annotation type,
UmlsLookup

Semantic type to name
mapping grammar

Add human readable names
for semantic types

5. Term disambiguation Term selection grammars Disambiguation heuristics: (1)
retain only the longest
UmlsLookup, (2) then among
all the longest, first select all
that come from UMLS
preferred labels,(3) then
choose among all of those the
one with the highest CUI
number (see reference [4])

6. Create annotations for
correction

Gazetteer Find all UmlsLookups with
semantic types that match
those used in the manual
annotation guidelines

Grammars Post process UmlsLookup
annotations into the schema
used by Khresmoi

7. Machine Learning Learning mode SVM, PAUM
or other

Model learning only: learn
model of Khresmoi entities
from manual corrections to
UmlsLookups, using
UmlsLookups, other UMLS
information and lexico-
syntactic annotations as
features.

Application mode SVM,
PAUM or other

Model application only: apply
the above model, using
UmlsLookups, other UMLS
information and lexico-
syntactic annotations as
features, to predict Khresmoi
entities.

Table 1: Application description

3.1 Term lookup: creating the gazetteers

The main data source used for the automatic semantic annotation of text within Khresmoi is
the Unified Medical Language System (UMLS) [3]. Gazetteers in step 4 above were created
from UMLS terms and concepts as represented in the Khresmoi knowledge base. For each
concept in UMLS, the UMLS provides a unique concept identifier, or CUI. Each concept is
also assigned to one of a small number of high level semantic types, from a semantic network.
The identifier of this type is known as a TUI.

A preferred label is given to each concept by UMLS, and a number of alternative labels. We
refer to these as “prefLabel” and “altLabel” respectively. These form the basis of the
gazetteers. As the UMLS source vocabularies are not intended for natural language
processing, however, there is much noise amongst these labels. We therefore carry out pre-
processing to remove this noise, in line with the methods described by [11,16]. A full
description of the gazetteer term processing follows:

1. A SPARQL query was used to retrieve, from the Khresmoi Knowledge Base:

◦ all prefLabels and their associated CUI URIs (instance) and direct semantic
type classes (TUI URIs) where the language tag of the label was “en”. This
resulted in 2 399 921 retrieved rows.

◦ all altLabels in the same way: 2 447 977 rows

2. After filtering so that only the direct types corresponding to TUIs relevant to
Khresmoi remain:

◦ prefLabel: 454 127 rows

◦ altLabel: 655 490 rows

3. The labels were then filtered as follows:

◦ filter out labels that contain an at (@) sign

◦ filter labels that contain “not otherwise specified”, “unspecified” “[NOS]” and
similar

◦ filter labels that contain “NEC”, “not elsewhere classified”, “unclassified” and
similar

◦ filter very short labels

4. Also, labels were changed in the following ways:

◦ remove angular brackets

◦ remove multiple spaces

◦ remove possessives

◦ remove brackets at the end

◦ remove parentheses at the end

◦ invert labels that have a single comma: e.g. “pain, dorsal” → “dorsal pain”

5. Then a final stage of filtering:

◦ remove labels with 6 or more tokens

6. If filtered labels match a pattern for being an abbreviation, the label gets added to an
abbreviation list, otherwise to a processed label (standard) list. After this we have:

◦ prefLabel standard: 317 619

◦ prefLabel abbreviations: 1 763

◦ altLabel standard: 561 603

◦ altLabel abbreviations: 12 225

7. All labels that match a list of stop words are filtered out, after which we have:

◦ prefLabel standard: 317 437

◦ prefLabel abbreviations: 1 761

◦ altLabel standard: 561 529

◦ altLabel abbreviations: 12 172

8. After this, all labels that are not abbreviations are run through GATE, tokenised, POS
tagged and stemmed and all word, number and symbol tokens are selected from the
processed labels. For each original label, three new labels are created:

◦ from all the original strings from the selected tokens

◦ from all the roots from the selected tokens

◦ from all the stems from the selected tokens

9. and from all of these, three gazetteer list files are created for each of the altLabel and
prefLabel lists, giving a total of 8 gazetteer lists:

◦ prefLabel, strings: 317 437

◦ prefLabel, roots: 317 430

◦ prefLabel, stems: 317 430

◦ prefLabel, abbreviations: 1 761

◦ altLabel, strings: 561 529

◦ altLabel, roots: 561 512

◦ altLabel, stems: 561 518

◦ altLabel, abbreviations: 12 172

3.2 Machine learning of Khresmoi entities

The final stage of the Khresmoi application consists of a GATE machine learning processing
resource. This operates in two modes.

In the first mode, training, the machine learning PR uses manual annotations to learn a
classifier for the Khresmoi entities. The features for learning instances are provided by the
prior steps of the application. In the second mode, application, the machine learning PR
applies the classifier to unseen documents, constructing instances for classification from the
same features used for learning the classifier.

This is shown in the following diagram, adapted from [12]:

The GATE machine learning PR provides an abstraction layer over multiple machine learning
algorithms. The PR defines how instances should be constructed from text, and what should
be used to define features for those instance. It also deals with mapping multi-class problems
(such as the one faced with the Khresmoi entities) into a series of binary classification
problems. The PR is configured by providing an XML description of the class and of
instances, and a definition of the machine learning library to be used.

The machine learning algorithms used for experiments are the Support Vector Machine
(SVM) and Perceptron implementations shipped with GATE. The precise algorithm used will
be described with each set of results. Both of these algorithms may suffer from imbalanced
training data, i.e. the case where tokens comprising entities are less frequent than tokens
comprising non-entities. The GATE implementations allow this unevenness to be taken into
account, by adjusting the margins between classes in the classifier hyperspace [13].

Figure 1: Machine learning application

The features used for constructing classification instances are taken from those described in
the following table, precise features will be given with each set of results.

Annotation providing
classification instance
feature

Windowing Attribute of annotation used

Token From -n to n tokens on each
side of the entity, n reported
with each set of results

String

Part of Speech

Root

Orthography

UMLS gazetteer lookup From -n to n tokens on each
side of the entity, n reported
with each set of results

TUI (semantic type identifier)

CUI (concept identifier)

Table 2: Outline of machine learning features

4 Iterative development process

Manual and automatic annotation are coupled through an iterative process. This is illustrated
in the diagram below, with each step described in the text following the diagram.

Run application over unseen documents

An iteration starts by running the full application over unseen documents. Documents are
selected to:

 Be representative of the full Khresmoi document set.

 Be within parameters that make them straightforward for human annotators (e.g.
within certain length limits, and having contentful text).

 Reflect problems that need addressing, given the outcome of previous iterations.

Figure 2: Iterative development process

Human correction of annotations

Automatically annotated documents are uploaded up to GATE Teamware [14], an annotation
workflow web server. GATE Teamware allows complex annotation workflows to be executed
online. These workflows may include distributed manual annotation steps, with human
annotators being assigned a GATE Teamware account. In the case of Khresmoi, a workflow
has three criteria:

 Which documents need annotating

 How many manual annotators should annotate each document – allowing double,
treble, or greater levels of annotation.

 Which human annotators should be used for this workflow

 Whether an addition “consensus” step is required.

As annotators login, Teamware assigns documents to them, in order to meet these criteria. If a
consensus step is required, then the results from individual annotators will be passed to a
further annotator for reconciliation of differences.

Quality control and performance metrics

Once a batch of documents has been completed, an initial analysis is carried out to ascertain
the quality of the batch. This includes measurement of inter annotator agreement, and
measurement of automatic / manual agreement (i.e. precision and recall). It should be noted
that this is not a formal evaluation against a gold standard, but a comparison of annotations to
manual corrections. At this stage, some documents or annotators may be rejected as outliers.
If no consensus set of annotations has been created in the previous step, annotations may be
combined by majority voting – i.e. an annotation will be accepted if it has been accepted by
the majority of annotators.

Manual error analysis

The quality controlled batch is then analysed for differences between the automatic and
manual sets, using tools from the GATE quality control suite. These include a variety of
quality control measurements, together with difference viewers.

Improve grammars and heuristics

The error analysis is used to inform manual improvements to the application's grammars and
heuristics. For example, quality control may show that a particular kind of UMLS term is
leading to false positives. The heuristics for gazetteer filtering could be amended in response
to this. As another example, quality control may show that a only the head word of particular
kind of term is annotated automatically, and so grammar rules could be added to improve
recognition of the whole term.

Retrain classifier

In addition to the above grammar improvement step, the corrected documents are used to
retrain the entity classifier.

5 Summary of iterations

In total, eight iterations of the above process were carried out. These are summarised in the
following table:

Iter-
ation

Description Corpus Input application Output application

1 Initial
experiments
using UMLS; no
machine learning

Described in
deliverable D1.3

Described in
deliverable D1.2

First Prototype, described
Section 3

2 Initial
experiments
using machine
learning

Initial Gene
Home Reference
Corpus

First Prototype,
described in
Section 3

Second Prototype, described
in Section 3 (with ML
model) V01

3 Knowledge
based
improvements

C0504 First Prototype,
described in
Section 3 (V01)

V02

4 Knowledge
based
improvements

C0512 V02 V03

5 Knowledge
based
improvements
and first ML
model for use in
future iterations

C0524 V03  V05

 ML model trained
from C0524
corrections

6 Second ML
model

C0701 V05 + ML model
from previous
iteration

V06 + ML model trained
from C0701

7 Third ML model C0830 V06 + ML model
from previous
iteration

ML model trained from
C0830 corrections

8 Fourth ML
Model

C0925 V06 + ML model
from previous
iteration

No further changes

Table 3: Summary of iterations

Note that after the prototype GATE applications, new applications were given version
numbers, starting at V02. V04 was a minor version, and was not used in experiments.
Iterations are described further in the following sections. Iterations have been grouped in to
sections as follows:

First iteration: improvement by error analysis (Section 6)

This iteration took the application and corpus created in the first phase of Khresmoi, used the
application to create annotations on the corpus, and examined manual corrections of those
annotations to provide an error report. The error report was used to create the first prototype
described in Section 3 of this report. The corpus used is described in Khresmoi Deliverable
D1.3.

Second iteration – experiments in manual and machine learned corrections (Section 7)

This iteration was used to perform experiments in the machine learning approach, as
described in Section 7. The first prototype, as created by the first iteration, was used to
annotate the Gene Home Reference corpus described in Khresmoi Deliverable D1.4.1.
Manual corrections of this were used to train and evaluate a machine learning model, and to
carry out experiments on machine learning feature sets. The results of this evaluation and the
experiments are described in Section 7. The corpus used is described in Khresmoi Deliverable
D1.4.1.

Iterations 3 to 5: knowledge engineered improvements (Section 8)

The prototype application created in iteration 1 was further improved in iterations 3 to 5, on
analysis of errors highlighted by the manual corrections from three corpora. This led to
several new versions of the prototype, named V02 to V06. The changes made can be
characterised as knowledge engineered changes: all required manual edits to rules, heuristics,
and gazetteers. The corpus used is described in Khresmoi Deliverable D1.4.1.

Iterations 6 to 8: machine learned models (Section 9)

Iteration 5 was also used to create a machine learned model of the manual corrections. This
was subsequently used with application V06 in iteration 6, to again create annotations for
manual correction and generation of a new machine learned model. This process was repeated
for iterations 7 and 8. The corpus used is described in Khresmoi Deliverable D1.4.1.

6 First iteration – improvement by error analysis

6.1 Description

The first iteration involved no machine learning of corrected annotations. While the
application used was analogous to the non-machine learning parts of the application described
above, the definition of annotations created differed, as described in D1.4.1 [6].

During this iteration, issues concerning the use of UMLS arose from an error analysis of
manually corrected documents. Although UMLS is a rich source of biomedical terms, its
source vocabularies were never created with natural language processing in mind. The use of
UMLS for NLP is therefore problematic, and within the first iteration, this was characterised
by three overlapping issues:

 High degree of term ambiguity – many terms in UMLS correspond to multiple
concepts.

 Low signal to noise ratio – many terms in UMLS can only be understood in the
context of their source vocabulary (“heart” for example, may refer to the concept for
“mouse heart”). Many others are also ambiguous with words in general language.

 Large numbers of “non-content” terms, such as HTML menus, disclaimers etc., were
annotated leading to a large number of irrelevant and false positive annotations.

These issues led to problems with early batches used for manual correction:

1. The more annotations there are, the harder it is for manual annotators to correct the
annotations.

2. The number of resulting annotation types makes it difficult to construct meaningful
semantic search queries.

3. Text containing meaningful health information content was sometimes swamped by
non-content, making it hard for annotators to deal with.

As discussed in [1] the approach we adopted to deal with the first two problems during
manual annotation is based upon work reported in [4]. Essentially whenever more than one
UMLS annotation is created for the same document span only the annotation with the lowest
CUI is retained. The reasoning behind this approach is that the lower the CUI, the more
general the concept. Keeping only the most general concept should result in fewer annotations
which still encode the same information.

The third problem was dealt with by demarcating content sections of text. In the application
described in previous sections, this task is carried out by a GATE BoilerPipe processing
resource.

6.2 Results

Corpora and results for this iteration are given in Khresmoi Deliverable D1.3 [1].

7 Second iteration – experiments in manual and machine
learned corrections

7.1 Description

The application used for the second iteration resulted from changes made in response to the
error analysis of the first iteration, as described in the previous section, and from changes to
the gazetteers, after an analysis of gazetteer term lists and of annotated documents from
earlier iterations. The application also incorporated machine learning of entities, as a way to
take further corrections and feed them forward to further application improvements. These
two changes resulted in the application described in the earlier Section “Application
description” .

The corpus used for this evaluation consisted of the Initial Corpus described in the
accompanying deliverable, D1.4.1 “Manually Annotated Reference Corpus”, comprising 625
documents. As there was some change in the definitions of semantic types between this Initial
Corpus, and those created by the application, the initial corpus was amended to map the
manual annotations to the annotations created by the application, as follows:

1. “Content” annotations were created from “Section” annotations: the Section
annotation was used from within the consensus set but if none is found there, one was
used from the manual annotation sets;

2. A new annotation type UmlsLookup was created wherever there was a Problem (i.e.
Diseases) or Anatomy annotation. This was carried out for manual annotation sets,
consensus sets and for the original automatic pre-annotation set.

The UmlsLookup annotations (combined Problem, i.e. Diseases, and Anatomy) could then be
compared to the results from the original automatic annotation, and to results from the latest
automatic annotation.

For comparisons, the application was also amended to only create semantic annotations of the
same UMLS type as in the manual corpus.

7.2 Results

Results given in this and future section use standard definitions of Precision (P), Recall (R),
and F1 measure. Two variants of each are given:

 Strict, where for two annotations to match, they must cover exactly the same
document span;

 Lenient, where for two annotations to match, they must have overlapping document
spans.

The Lenient measure allows us to determine how much error is due not to a failure to find an
entity, but to a failure to find the correct extent of the entity (e.g. an application might miss

 adjectives that are commonly part of the entity label).

The first set of results compares the manual annotations from the Initial Corpus to two non-
machine learning applications:

 Initial Prototype: the initial prototype application, from which manual corrections
were made

 Second Prototype: the application reported in this document

The results of these evaluations are given in the following table:

Experiment Key annotations Response
annotations

Strict Lenient

P R F1 P R F1

First
prototype

Manual corrections
from first prototype

Automatic annotations
from first prototype

0.56 0.60 0.58 0.67 0.72 0.70

Second
Prototype

Manual corrections
from first prototype

Automatic annotations
from second prototype

0.58 0.64 0.61 0.71 0.78 0.74

Table 4: Results of second iteration

The second prototype shows small gains in both precision and recall, for the UMLS semantic
types present in the initial corpus. This is presumably due to the improvements in term
lookup, through improved gazetteers.

The second prototype was augmented with machine learning as described in the section
“Machine Learning of Khresmoi Entities” above, using the GATE Perceptron with Uneven
margins algorithm (PAUM). This application was used to predict chunks where a UMLS term
should be found, again training and comparing against manual corrections where all
annotation types had been merged into a single type. As an initial test of the effectiveness of
manual annotations in improving annotation quality, the application was evaluated over two
folds with a 75% holdout. Several feature sets were evaluated, as described in the following
table:

Feature set

1 TOK 2 +TUI 3 +CUI 4 +THR 5 -SUR

Algorithm
and options
(see GATE
manual for
option
descriptions)

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

POS, window
-3 to +3

Yes Yes Yes Yes Yes

Root,
window -3 to
+3

Yes Yes Yes Yes Yes

Kind, -3 to
+3

Yes Yes Yes Yes Yes

TUI, -8 to +8 No Yes No Yes No

TUI -3 to +3 No No Yes No Yes

CUI -3 to +3 No No Yes No Yes

Thresholds Default Default Default Changed Default

Surround
mode

True True True True False

Table 5: Second iteration features

The results of evaluations of these feature sets are given below:

Experiment Key annotations Response
annotations

Strict Lenient

P R F1 P R F1

1 TOK

Manual corrections
from first prototype

Automatic annotations
from second prototype
with PAUM

0.89 0.59 0.71 0.98 0.65 0.78

2 +TUI 0.90 0.65 0.76 0.98 0.70 0.82

3 +CUI 0.91 0.65 0.75 0.98 0.70 0.81

4 +THR 0.91 0.63 0.75 0.98 0.68 0.80

5 -SUR 0.30 0.45 0.36 0.60 0.91 0.72

Table 6: Second iteration feature experiment results

Token level features alone give greater precision and worse recall than in the non-PAUM
gazetteer applications reported in the previous table. This is to be expected: the PAUM is able
to generalise the context of terms, giving precision in detecting them, without the noise
present in a dictionary. It does not, however, have the recall possible with a dictionary. These
results are broadly similar to those reported in [15], and the literature referenced there.

Additional UMLS lookup features (experiments 2 and 3) make use of the term dictionaries in
UMLS, and show some improvement in recall over token features alone, without loss in
precision. The approach in these experiments has successfully combined the precision of the
PAUM, with at least some of the recall of a dictionary. In general, performance is greater
when combining the PAUM with dictionary lookup. Changing thresholds and algorithm
surround mode makes little difference.

8 Iterations 3 to 5: knowledge engineered improvements

8.1 Description

Iterations 3 to 5 followed the same pattern as iteration 1, updating the application gazetteers,
pattern matching rules and heuristics in response to an error analysis of manual corrections.
These were therefore purely knowledge engineering changes, with no machine learning
component.

A different corpus was used for each iteration. The corpora consisted of a mixture of
Wikipedia and other Web documents, better reflecting the actual target of the Khresmoi
application than the Gene Home Reference corpus used in earlier iterations. Manual
corrections were made by five annotators, and a consensus set (majority vote) selected from
these. Full details of the corpus are given in Khresmoi Deliverable D1.4.1.

8.2 Results

The table below gives the performance of the applications created at each of these three
iterations. In each case, the key annotations are the consensus of annotations from the five
independent annotators. Evaluation metrics are true micro averages, i.e. the mean of all
measures for each annotation type in each document. Definitions of strict and lenient metrics
are as before.

Iter-
ation

Corpus Key
annotations

Response
annotations

Strict Lenient

P R F1 P R F1

3 C0504 Manual
corrections

Annotations from V01
pipeline

0.59 0.86 0.70 0.63 0.91 0.74

4 C0512 Manual
corrections

Annotations from V02
pipeline

0.67 0.90 0.77 0.69 0.92 0.79

5 C0524 Manual
corrections

Annotations from V03
pipeline

0.81 0.94 0.87 0.82 0.94 0.87

Table 7: Iterations 3 to 5, results

The evaluations show an improvement in Precision with no loss in the already high Recall.
Knowledge engineered changes were focussed on correcting false positives. Additionally, it
might be expected that manual corrections are more likely to spot false positives than false
negatives: it is easier for someone to scan annotations and deleted them where wrong, than to
read a full document and add in things that have been missed. This would impact evaluations,
potentially giving a falsely raised recall.

9 Iterations 5 to 8: machine learned models

9.1 Description

Iterations 5 to 8 built on the output of iteration 4 by creating machine learned models from
manual corrections, in a process analogous to that of iteration 2.

9.2 Results

Following the approach to machine learning from manually corrected annotations in iteration
2, optimal features for machine learning were first selected. Features for testing were grouped
in to sets, and models built and evaluated for each of these sets.

The following algorithm configuration options were kept constant (see the GATE user guide
for an explanation of each):

 Algorithm: PAUM

 PAUM parameters: p 1 -n 10 -optB 0.3

 Thresholds: default

 Surround mode: true

The PAUM implementation in GATE classifies each token as being either the beginning of an
entity, the end of an entity, or neither. Machine learning instances are tokens, machine
learning features are defined relative to tokens. Features may be windowed, for example, we
could consider the part of speech of each of the tokens 3 to the left and 3 to the right of a
token to be features of that central token. In the description that follows, windowed features
are suffixed thus: [-n to +n], meaning the feature is 2n+1 features, at the token position and n
tokens to each side. Where no window is give the feature is constructed at just the token
position.

Features were constructed to make use of information added by the knowledge engineered
application, such as semantic types and information from the UMLS. It was intended that the
information guide machine learning model building. The knowledge engineered application
can add multiple entities at a given position, where it is unable to assign an unambiguous
meaning. Several features make use of the machine learning framework's default behaviour of
choosing one of these entities at random as a feature, whereas other features have been
constructed to make a best guess, or to combine unigrams of all possible guesses at this point.
These and other features are listed below.

 POS: Part of speech of the token at a position

 Root: Morphological root of the token at a position

 Kind: Orthographic kind of the token at a position (number, word etc.)

 TUI: UMLS Type identifier for a term found at underlying the given position by the
knowledge engineered application. If several terms exist at the position, then the
algorithm chooses one randomly.

 CUI: UMLS Concept identifier for a term found at underlying the given position by
the knowledge engineered application. If several terms exist at the position, then the
algorithm chooses one randomly.

 TUI / CUI unigrams: All unigrams of any UMLS terms found to be underlying the
given position by the knowledge engineered application.

 Khresmoi type: The Khresmoi semantic type (Disease, Investigation, Anatomy,
Drug) for a term at a position. If several terms exist at the position, then the algorithm
chooses one randomly.

 Best TUI / CUI / Khresmoi type: The TUI, CUI, or Khresmoi type of the knowledge
engineered application's best guess at which UMLS term underlying the position is
correct.

 Umls_Txxx: For each UMLS TUI, a binary feature is created that indicates if at this
token position, there is an overlapping UMLS term with the TUI.

Feature sets constructed from these features are given in the following table:

Feature set

1 2 3 4 5 6 7 8 9 10 11

POS, window [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Root, window [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Kind, [-3 to +3] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

TUI [-3 to +3] Yes No No No No No No No No Yes No

CUI [-3 to +3] Yes No No No No No No No No No No

TUI and CUI unigrams
contained within the term

No Yes No No No No No No No No No

TUI and CUI unigrams [-3
to +3]

No No Yes No No No No No No No No

Khresmoi types [-3 to +3] No No No No Yes No No No Yes Yes No

Best Khresmoi type [-3 to
+3]

No No No No No Yes No No Yes Yes Yes

Umls_Txxx [-3 to 3] No No No No No No Yes No No No No

Best TUI [-3 to +3] No No No No No No No Yes No No Yes

Table 8: Iterations 5 to 8, feature sets

Feature set selection was carried out with corpus C0524. For evaluation of feature sets,
machine learning was trained twice, on two random splits of 75% of the corpus, and tested on
the remaining 25%. The results of the two evaluations were micro averaged, and are given
below.

Feature set

Strict Lenient

P R F1 P R F1

1 0.8616 0.6519 0.7420 0.9008 0.6814 0.7757

2 0.4458 0.5088 0.4752 0.6454 0.7367 0.6880

3 0.4458 0.5088 0.4752 0.6454 0.7368 0.6880

4 0.7610 0.1463 0.2454 0.9240 0.1776 0.2979

5 0.8566 0.6307 0.7259 0.9026 0.6641 0.7646

6 0.8519 0.6580 0.7418 0.8955 0.6911 0.7794

7 0.8044 0.3776 0.5139 0.9015 0.4230 0.5757

8 0.8553 0.6480 0.7373 0.8992 0.6811 0.7751

9 0.8583 0.6789 0.7579 0.9006 0.7121 0.7951

10 0.8509 0.6730 0.7514 0.8919 0.7052 0.7874

11 0.8499 0.6725 0.7508 0.8922 0.7057 0.7880

Table 9: Iterations 5 to 8, feature experiment results

Feature set 9 gave the best F measure, as well as balanced P and R measures, and was
therefore selected for use in all future machine learning iterations. Three iterations were
carried out using these features. As before, the key annotations are the consensus of
annotations from five independent annotators. Evaluation metrics are true micro averages, i.e.
the mean of all measures for each annotation type in each document.

Iter-
ation

Corpus Key
annotations

Response
annotations

Strict Lenient

P R F1 P R F1

6 C0701 Manual
corrections

Annotations fromV06
pipeline, model
trained on C0524

0.86 0.83 0.84 0.87 0.87 0.86

7 C0830 Manual
corrections

Annotations fromV06
pipeline, model
trained on C0701

0.98 0.77 0.87 0.99 0.78 0.87

8 C0925 Manual
corrections

Annotations fromV06
pipeline, model
trained on C0830

0.98 0.57 0.72 0.98 0.57 0.72

Table 10: Iterations 6 to 8: results

Iteration 6 shows a large increase in precision over iteration 5, with a 4% loss in recall. There
is an overall gain in F1. Iteration 7 shows a further large increase in precision to 0.99, with a
9% loss in recall. There is a small increase in F1. Iteration 8 shows a further large degradation
of recall.

Adding machine learning to the application allows us to improve precision. As is often the
case, this is traded against recall.

Considering the machine learning model as a vetoing model provides a possible explanation
for the results. The machine learning algorithm is provided with a number of candidate
annotations as features, from gazetteer lookup and from the knowledge engineered rules. The
model must select one or none of these candidates as positive, thus vetoing the others, and
disambiguating the annotations. If the model creation encodes, as is likely, that the candidate
annotations provide a high level of information about the correct result, then it will weight
these features very highly. It will therefore be unlikely to classify tokens as positive where
they do not lie within a candidate annotation, and be unable to create new positives. It will
become fitted to those annotations considered positive by the knowledge engineered portion
of the application, and be unable to find entities that have never been seen before. Recall will
therefore suffer when run over new data in a second or third corpora. As iterations proceed,
this is reinforced, and the model becomes over-fitted to the true positives accepted by the
manual annotators.

10 Conclusion

This report has described methods for coupling manual and automatic annotation of Khresmoi
entities, in an iterative process, in an attempt to drive improvement in the automatic
annotation. Improvements are made in two ways: manual changes to grammars and
heuristics; and re-training of a classifier.

Both approaches have shown some success. Manual changes to grammars and heuristics
resulted in a good improvements in both precision and recall when measured against corrected
annotations. Four iterations of classifier re-engineering against maual corrections has shown
that precision can be improved with no loss in recall, again when tested against the manually
corrected annotations.

Manually corrected annotations have also been used to select sets of features form which to
build machine learning classifiers. These classifiers have been used to generate further data
for correction, and this iteratively fed back in to classifier training. This did lead to
improvements in precision, when measured against manual corrections. Recall, however,
suffered, and it is likely that continued iterations are over-fitting the models to the training
data. Optimal results were achieved after a single machine learned iteration.

11 References

[1] Niraj Aswani, Liadh Kelly, Mark Greenwood, Angus Roberts, Matthias Samwald, Natalia
Pletneva, Gareth Jones, Lorraine Goeuriot. Report on Results of the WP1 First Evaluation
Phase, Khresmoi project deliverable D1.3 August 2012.

[2] Mark A. Greenwood, Angus Roberts, Niraj Aswani, Phil Gooch. Initial prototype for
semantic annotation of the Khresmoi literature, Khresmoi project deliverable D1.2 May
2012.

[3] Betsy L. Humphreys and Donald A.B. Lindberg and Harold M. Schoolman and G. Octo
Barnett. The Unified Medical Language System: an informatics research collaboration. J
Am Med Inform Assoc. 1998, 5:1

[4] King, B., Wang, L., et al. (2011). Cenagage Learning at TREC 2011 Medical Track. The
Twentieth Text Retrieval Conference Proceedings (TREC 2011), Gaithersburg, MD.
National Institute for Standards and Technology.

[5] Angus Roberts, Niraj Aswani, Natalia Pletneva, Celia Boyer, Thomas Heitz, Kalina
Bontcheva, Mark A. Greenwood. Manual Annotation Guidelines and Management
Protocol, Khresmoi project deliverable D1.1 , February 2012.

[6] Mark A. Greenwood, Angus Roberts, Niraj Aswani, Johann Petrak. Manually
Annotated Reference Corpus, Khresmoi project deliverable D1.4.1, May 2013.

[7] Use case definition including concrete data requirements. Khresmoi project
deliverable D8.2

[8] H. Cunningham, et al. Text Processing with GATE (Version 6). University of Sheffield
Department of Computer Science. 15 April 2011. ISBN 0956599311

[9] H. Cunningham, V. Tablan, A. Roberts, K. Bontcheva (2013) Getting More Out of
Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics. PLoS
Comput Biol 9(2): e1002854. doi:10.1371/journal.pcbi.1002854

[10] V. Tablan, I. Roberts, H. Cunningham, and K. Bontcheva. GATECloud.net: a Platform
for Large-Scale, Open-Source Text Processing on the Cloud. Philosophical Transactions
of the Royal Society A, 371(1983), 2013 doi:10.1098/rsta.2012.0071.

[11] A. McCray, O. Bodenreider, J. Malley, and A. Browne. Evaluating UMLS Strings for
Natural Language Processing. In Proceedings of the 2001 American Medical Informatics

Association Annual Symposium, pages 448–452, Portland, OR, USA, 2001.

[12] A. Roberts, R. Gaizauskas, M. Hepple, G.Demetriou, Y. Guo, I. Roberts, and A.
Setzer. Building a semantically annotated corpus of clinical texts. Journal of Biomedical
Informatics, 42(5):950–66, October 2009

[13] Y. Li, K. Bontcheva and H. Cunningham. Adapting SVM for Data Sparseness and
Imbalance: A Case Study on Information Extraction. Natural Language Engineering,
15(02), 241-271, 2009

[14] K. Bontcheva, H. Cunningham, I. Roberts, A. Roberts, V. Tablan, N. Aswani, G.
Gorrell. Teamware: A Web-based, Collaborative Text Annotation Framework. Language
Resources and Evaluation. In Press, preprint: http://gate.ac.uk/sale/teamware-
lre2012/teamware.pdf

http://gate.ac.uk/sale/teamware-lre2012/teamware.pdf
http://gate.ac.uk/sale/teamware-lre2012/teamware.pdf
http://dx.doi.org/10.1098/rsta.2012.0071
http://rsta.royalsocietypublishing.org/
http://rsta.royalsocietypublishing.org/

[15] A. Roberts, R. Gaizauskas, M. Hepple, and Y. Guo. Combining terminology resources
and statistical methods for entity recognition: an evaluation. In Proceedings of the Sixth
International Conference on Language Resources and Evaluation, LREC 2008,
Marrakech, Morocco, May 2008

[16] A. Aronson. Filtering the UMLS metathesaurus for MetaMap. Technical report, U.S

National Library of Medicine, Lister Hill National Center for Biomedical Communications,
Cognitive Science Branch, 2005.

[17] A. Hanbury, C. Boyer, M. Gschwandtner, H. Müller. KHRESMOI: towards a multi-
lingual search and access system for biomedical infromation. Med-e-Tel, Luxembourg, 2011.

	1 Executive summary
	2 Introduction
	2.1 Background
	2.2 Summary of this report

	3 Application description
	3.1 Term lookup: creating the gazetteers
	3.2 Machine learning of Khresmoi entities

	4 Iterative development process
	5 Summary of iterations
	6 First iteration – improvement by error analysis
	6.1 Description
	6.2 Results

	7 Second iteration – experiments in manual and machine learned corrections
	7.1 Description
	7.2 Results

	8 Iterations 3 to 5: knowledge engineered improvements
	8.1 Description
	8.2 Results

	9 Iterations 5 to 8: machine learned models
	9.1 Description
	9.2 Results

	10 Conclusion
	11 References

